Sequential development of interfering metamorphic core complexes: numerical experiments and comparison with the Cyclades, Greece

C. Tirel¹, P. Gautier², D. J. J. van Hinsbergen³, M. J. R. Wortel¹

¹ Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands.

² Université Rennes 1, Géosciences Rennes UMR 6118 CNRS, Campus de Beaulieu, 35042 Rennes, France

³ Paleomagnetic Laboratory ‘Fort Hoofddijk’, Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, the Netherlands

Abstract

The mechanics of metamorphic core complex (MCC) development and the associated process of lower crustal flow have been the topic of several modelling studies. The model setup usually includes a local heterogeneity forcing deformation to localize at a given site, enabling only one MCC to develop. This paper presents numerical lithospheric-scale experiments in which deformation is not a priori localized in a specific place, in order to examine whether multiple MCCs could develop during extension, at which conditions, and how. Configurations with either a single MCC or several far-distant MCCs aligned in the section parallel to extension are obtained for a relatively wide range of initial conditions, the only firm requirement being that the lower crust and the sub-Moho mantle
both have very low strengths. In contrast, only a narrow range of conditions leads to the
development of closely spaced MCCs. In this case, the MCCs interfere with one another
(the domes are partly superimposed or/and share a shear zone in common) and develop in
sequence. This configuration is compared with the Cyclades archipelago, where closely
spaced chains of MCCs have been described in the literature. A review of available data
on the islands documents a good agreement with the experiments in terms of final depth
of the Moho, geometry and kinematic pattern of the MCCs, and timing of exhumation of
the metamorphic rocks. Based on this agreement, we tentatively deduce from the
numerical results some of the conditions that prevailed at the initiation of, and during,
post-orogenic MCC-type extension in the Cyclades. The most likely initial thickness of
the crust is between 40 and 44 km, while that of the thermal lithosphere is only ~ 60 km.
The latter value suggests that the Cyclades area has experienced a strong heating event
before post-orogenic extension started. Either a back-arc subduction setting or a process
of mantle delamination may account for this event. The numerical results also suggest a
boundary velocity of 2.0-2.3 cm/yr, which should basically reflect the rate at which the
South Hellenic subduction retreated. Considering ~ 500 km as an upper bound for the
amount of retreat balanced by Aegean extension and assuming that this retreat mostly
occurred during MCC-type extension in the Cyclades, we find that the boundary velocity
could have been as high as 2.1 cm/yr if MCC-type extension lasted 24 Myr, starting at ca.
30 Ma and finishing at ca. 6 Ma, as suggested by available geochronological data. A
velocity of 2.1 cm/yr agrees well with the numerical results.
Introduction

Metamorphic core complexes (MCCs) are typical structures in regions made up of highly extended continental lithosphere (e.g. Coney 1980; Lister et al. 1984; Burg et al. 1994; Jolivet et al. 1998). They constitute metamorphic domes capped by one or several low-angle normal-sense shear zones (or “detachment” zones) that separate a highly faulted hangingwall made up of superficial rocks from a footwall made up of rocks exhumed from the middle or lower crust and recording a progressive change from ductile to brittle behaviour (Fig. 1). As such, MCCs reflect highly localized extensional strain on the scale of the crust. As a result, the corresponding region could be expected to show pronounced lateral variations of the Moho depth. Yet, in regions where MCCs are found, the Moho commonly displays a flat geometry, like in the Basin and Range province (Hauser et al. 1987; McCarthy & Thompson 1988) and in the Aegean domain (Makris 1978; Sachpazi et al. 1997; Tirel et al. 2004b). Pervasive flowing of the lower crust, thought to be possible if the rocks are of sufficiently low viscosity, is usually viewed as the most likely mechanism accounting for the flatness of the Moho in such regions (e.g. Block & Royden 1990; Buck 1991; Wernicke 1992; Brun & van den Driessche 1994; McKenzie et al. 2000).
The mechanics of MCC development and associated process of lower crustal flow have been addressed in several analytical, numerical and analogue modelling studies so far (Block & Royden 1990; Buck 1991; Wdowinski & Axen 1992; Brun et al. 1994; Tirel et al. 2006; Rosenbaum et al. 2005; Wijns et al. 2005; Gessner et al. 2007). In these studies, the modelling setup is generally concerned with the crust only; the way extension is accommodated in the underlying mantle is not addressed. More recently, Tirel et al. (2004a, in press) have carried out numerical experiments with a setup encompassing the subcrustal mantle. Among these experiments, those involving a very high initial geothermal gradient are characterized by a greater complexity in the development of detachment zones, with commonly several synthetic and antithetic shear zones being formed in sequence during the growth of a single huge MCC. In other words, these experiments tend to display strain delocalization during extension. However, for the purpose of a parametric analysis, this study needed to share the same shortcoming as previous studies did: The initial setup included a local heterogeneity forcing deformation to localize at a given site, enabling only one MCC to develop.

In the present study, we have performed new lithospheric-scale experiments in which deformation is not a priori localized in a specific place (the initial model is perfectly homogeneous laterally, and the grid is randomly distributed), in order to examine whether multiple MCCs could develop during extension, at which conditions, and how. Numerical configurations with either a single MCC or several far-distant MCCs aligned in the section parallel to extension have been obtained for a relatively wide range of initial conditions. This suggests that parallel chains of MCCs could be a common situation in nature, provided the appropriate conditions are maintained over a region wide
enough. In contrast, only a narrow range of conditions has led to the development of closely spaced MCCs. In this case, because of the close spacing, the MCCs interfere with one another (the domes are partly superimposed or/and share a shear zone in common) and develop in sequence. The fact that this configuration is obtained for only a narrow range of conditions suggests that it should be rare in nature. Conversely, if it is observed in a natural setting, some insight may be gained from the experiments about the mechanics of extension and the physical properties of the lithosphere at the onset of the extensional event in the region.

The case of several MCCs aligned in a section parallel to the direction of extension is not uncommon worldwide. Examples may be found in the North American Cordillera (Coney 1980; Wust 1986), especially in the southernmost Basin and Range (Davis 1980) and around the border between U.S.A. and Canada (Parrish et al. 1988; Vanderhaeghe & Teyssier 2001), also possibly at the latitude of the Snake Range and in the central Basin and Range (Wernicke 1992). The French Massif Central provides another example (Burg et al. 1994; Vanderhaeghe & Teyssier 2001). In the Mediterranean area, this situation is encountered in the northern Tyrrhenian domain (Jolivet et al. 1998) and, within the Aegean domain, in the Cyclades archipelago (Lister et al. 1984; Gautier & Brun 1994a, b; Jolivet et al. 2004) and in the nearby Menderes Massif of western Turkey (Bozkurt 2001; Gessner et al. 2001).

The Cyclades archipelago constitutes a particularly interesting example because it has been argued earlier that the islands form closely spaced chains of MCCs that interfere with one another (Gautier & Brun 1994a, b). In the following, we first describe our numerical experiments, then review the structural and metamorphic evolution of the
Cyclades. We subsequently compare the numerical results to the Cycladic MCC-type. The comparison concerns the final depth of the Moho, the geometry of the MCCs, their kinematic pattern, and the timing of exhumation of the metamorphic rocks. Finally, as the natural case and the experiments compare relatively well, we tentatively deduce from the numerical analysis the most likely range of conditions that prevailed in the Cyclades domain at the onset of Aegean extension.

1. Numerical modelling

1.1. Initial and boundary conditions

Two series of numerical experiments have been carried out to determine the conditions for development of MCCs and particularly sequential development of MCCs, as a function of initial crustal thickness, thermal structure and boundary velocity.

The model geometry consists of a rectangular box (500 x 150 km) composed of a continental crust, a lithospheric mantle and an asthenosphere with brittle-elasto-ductile properties (Fig. 2). The numerical grid consists of 250 x 75 quadrilateral bilinear elements (2 km x 2 km). Each element is subdivided into two pairs of triangular sub-elements to avoid meshlocking (Cundall 1989). The mesh is randomly non-regular (random distribution of the nodes) and contains neither an anomaly in structure nor a seed that would force deformation to localize at a given site. The continental crust has an average composition of quartz-diorite with a density of 2800 kg.m$^{-3}$ (Table 1). The crust is divided into four colour marker layers to provide for a good visual tracing of the
developing structures. The lithospheric mantle and the asthenosphere have an average composition of olivine with a density of 3300 kg.m\(^{-3}\) (Table 1). Each numerical element is assigned a specific material phase which is defined by density and thermal and rheological parameters.

The initial temperature field is defined by a surface temperature fixed at 0°C and a temperature of 1330°C at the base of the lithosphere. The lateral thermal boundary conditions inhibit heat flow across vertical boundaries of the box (no heat exchanges with the surrounding region).

Extension of the entire lithosphere is necessarily dependent on displacements applied at plate boundaries. Horizontal displacement with constant velocity is applied to the left boundary of the box (Fig. 2). The opposite boundary is fixed. Other boundary conditions of the numerical box are a free surface at the top of the box and a pliable Winkler basement at the bottom, which supposes free slip along both surfaces. The vertical normal stresses are proportional to the vertical displacement of the bottom boundary (Burov & Cloetingh 1997). Hydrostatic forces ensure local isostatic compensation.

1.2. Numerical method

The code PAR(A)OVOZ solves mechanical and thermal equilibrium equations in a large strain mode. This thermo-mechanical code based on FLAC\(^\circledR\) and PARAVOZ v3 (Cundall 1989; Poliakov et al. 1993) is a mixed finite-difference/finite element, fully explicit, time-marching Lagrangian algorithm, and has been described in several previous
publications (Poliakov et al. 1993; Burov & Guillou-Frottier 1999, 2005; Burov & Poliakov 2001, 2003; Le Pourhiet et al. 2004). The description here will be limited to basic features.

The code solves the conservation equations for energy, mass and momentum:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho v_i) = 0, \quad (1a)
\]

where \(v \) is velocity and \(\rho \) is density, with the Newtonian equation of motion in the continuum mechanics approximation:

\[
\frac{\rho \hat{v}_i}{\partial t} - \frac{\partial}{\partial x_j} \tau_{ij} - \rho g_i = 0, \quad (1b)
\]

\[
\frac{D \sigma}{Dt} = F(\sigma, u, \nabla \hat{u}, ..., T...), \quad (1c)
\]

where \(t \) is time, \(g \) is acceleration due to gravity, \(u \) is the displacement vector, \(T \) is temperature, \(F \) –is the functional relationship, \(D \) is material derivative and \(\sigma \) is Lagrangian stress. This equation is coupled with constitutive and heat transport equations:

\[
k \nabla^2 T - \rho C_p \frac{\partial T}{\partial t} + H_r = \rho C_p v \cdot \nabla T \quad (2)
\]

where \(v \) is the velocity vector, \(C_p \) is the specific heat, \(k \) is the thermal conductivity and \(H_r \) is the internal heat production per unit volume. The Boussinesq approximation is used in the equation of state to account for body forces due to thermal expansion:

\[
\rho = \rho_0 (1 - \alpha(T - T_0)), \quad (3)
\]

where \(\alpha \) is the coefficient of thermal expansion (Table 1). Radiogenic heating is taken into account (Table 1). The right-hand side of equation (2) is calculated directly from
equation (1), whilst the left-hand side is computed using a separate numerical scheme. A
dynamic relaxation technique, based on the introduction of artificial inertial masses in the
dynamic system (Cundall 1989), is used to increase the internal time step and accelerate
the solution of the governing equations (1).

The Lagrangian method allows the use of a small strain formulation for large
strain problems because the mesh is able to move and deform with the material. At each
time step, the new positions of the grid nodes are calculated from the current velocity
field and updated in large strain mode accounting for the rotation of principal stress axes
using Jauman’s co-rotational correction:

\[
\omega_g = \frac{1}{2} \left(\frac{\partial \hat{u}_i}{\partial x_j} - \frac{\partial \hat{u}_j}{\partial x_i} \right)
\]

\[
\sigma_{ij}^{\text{corrected}} = \sigma_{ij}^{\text{small strain}} + (\omega_{ik} \sigma_{kj} - \omega_{ik} \omega_{kj}) \Delta t
\]

In quasi-static mode, the algorithm uses artificial inertial masses to suppress
inertial effects and accelerate the computations (Cundall 1989). PAR(A)OVOZ also
deploys a dynamic remeshing scheme, which makes it possible to model very large
displacements

Each grid element simultaneously handles three rheological terms: brittle, elastic
and ductile; thus the local deformation mode may change from dominantly brittle to
dominantly ductile or elastic, depending on mechanical and temperature conditions.
Material parameters for ductile creep are obtained from Hansen & Carter (1982) for
quartz diorite and Goetze (1978) for olivine (Table 1).

The brittle (plastic) behaviour is described by the experimental Byerlee’s law
(Byerlee 1978) which is reproduced by non-associative Mohr-Coulomb plasticity with a
friction angle $\phi = 30^\circ$, cohesion $C_0 = 20$ MPa and dilatation angle $\psi = 0^\circ$ (Gerbault et al. 1998, 1999):

$$|\tau| = C_0 - \sigma_n \tan \phi, \quad (5)$$

where τ is shear stress and σ_n is normal stress. Plastic failure occurs if the two following conditions are satisfied; shear failure criterion $f = \tau_{II}^* + \sigma_1^* \sin \phi - C_0 \cos \phi = 0$ and $\partial f / \partial t = 0$ (Vermeer & de Borst 1984). In 2D formulation, $\tau_{II}^* = \sqrt{(\tau_{11} - \tau_{22})^2 / 4 + \tau_{12}^2}$ and $\sigma_1^* = (\sigma_{11} + \sigma_{22})/2$. In terms of principal stresses, the equivalent of the yield criterion (5) is: $\sigma_1 - \sigma_3 = -\sin \phi(\sigma_1 + \sigma_3 - 2C_0 / \tan \phi)$.

The elastic behaviour is described by the linear Hooke’s law:

$$\varepsilon_{ij} = E^{-1} \sigma_{ij} - \nu E^{-1} \sigma_{kk} \delta_{ij}, \quad (6)$$

where repeating indexes mean summation and δ is Kronecker’s operator. The values for the elastic moduli are $E = 80$ GPa (Young’s modulus) and $\nu = 0.25$ (Poisson’s ratio) (Turcotte & Schubert 2002).

The viscous (ductile) behaviour is described by an experimental uni-axial power law relationship between strain rate and stress (Kirby & Kronenberg 1987; Ranalli 1987):

$$e_{ij}^d = A(\sigma_1 - \sigma_3)^n \exp(-H / RT), \quad (7)$$

where $H = E_a + PV$, e_{ij}^d is the shear strain rate tensor, T is the temperature in K, σ_1 and σ_3 are the principal Cauchy stresses (compression is negative), P is the pressure, V is the activation volume. A, H, E_a, and n are the material constants (Table 1) and R is the universal gas constant. The effective viscosity μ_{eff} for this law is:

$$\mu_{eff} = e_{ij}^{d(t^{-n})/n} A^{-1/n} \exp(H(nRT)^{-1}). \quad (8)$$
For non-uniaxial deformation, the uniaxial relationship (7) is converted to a triaxial form using the invariant of strain rate $\epsilon_\mu^d = [\text{Inv}_\mu(e_{ij})]^{1/2}$ and geometrical proportionality factors (e.g. Burov et al. 2003). This is needed because the rotations due to deformation can be large, and hence the invariant form of strain tensor has to be used:

$$\mu_{\text{eff}} = e_{\mu}^{d(1-n)/n} (A^*)^{-1/n} \exp(H(nRT)^{-1}),$$

where $A^* = \frac{1}{2} A_0^{-1/2} n^{(n+1)/2}$.

The general constitutive viscoplastic model of the code is characterized by a visco-elastico-plastic deviatoric behavior and an elastoplastic volumetric behaviour, with the following strain rate partitioning ($M =$ Maxwell, $P =$ “Plastic”):

$$\dot{\epsilon}_{ij} = \dot{\epsilon}_{ij}^M + \dot{\epsilon}_{ij}^P$$

The visco-elastic and plastic strain-rate components are thus assumed to act in series. The visco-elastic constitutive law corresponds to a Maxwell component, and the plastic constitutive law corresponds to the above-described Mohr-Coulomb model. In this implementation, the new global stress components are calculated, assuming that the principal directions have not been affected by the occurrence of plastic flow.

2. **Numerical experiments**

2.1. **Exploring the conditions for MCC-type extension**

To establish the initial and boundary conditions at the onset of extension, a series of experiments has been performed in order to encompass end-member situations of continental extension.
Experiments on the effects of initial crustal thickness and initial geotherms (determining the initial depth of the 1330°C isotherm) have been carried out. Twenty-eight experiments have been performed with initial crustal thicknesses of 30 to 60 km and initial thermal lithospheric thickness of 60 to 120 km (Table 1). A constant horizontal displacement is applied at the left vertical boundary with \(v = 2.0 \, \text{cm/yr} \) for each of these simulations. Figure 3a shows the initial geotherm and strength profile of the experiments with an initial crustal thickness of 30, 44 and 60 km and an initial depth of the 1330°C isotherm at 60, 80, 100 and 120 km. The classification of three basic domains (Fig. 3b) has been made on account of the first type of structure observed in the experiments (during the first ~20 Myr of extension). They are characterized by (i) the formation of ocean floor, or (ii) the development of MCCs (considering that the main features defining a MCC are the exhumation of middle to lower crustal rocks, a detachment zone at the surface, and a flat Moho at depth), or (iii) a combination of these two processes (transitional mode). The experiments identified with colour dots in Figure 3b are shown with the same colours in Figure 3a. Figure 3c shows snapshots of these specific experiments, illustrating the general MCCs mode, the interfering MCCs mode, the transitional mode and the oceanization mode.

The oceanization mode (blue marker) is characterized by a strong necking of the entire continental crust, which results in sea-floor spreading when break-up occurs (Fig. 3c). This mode implies a high strength of the lithospheric mantle (Fig. 3a).

The MCCs domain identified in Figure 3b displays variable characteristics. Most experiments show the development of several MCCs during extension. Depending on the initial and boundary conditions, the MCCs display a large range of size and amount of
exhumation. This domain can be subdivided into two subdomains, corresponding to two
types of extension, with either independent or interfering domes. The interfering MCCs
mode (yellow marker) is obtained for a restricted set of conditions, with an initial
thickness of the thermal lithosphere of ~60 km and an initial crustal thickness between 40
and 50 km. A detailed description of this mode is given in section 2.2.

The non interfering MCCs mode is more common (Fig. 3b). An example is given
in Figure 3c (red marker), which shows the development of a single huge dome. Other
experiments show the development of several far-distant domes that do not interfere with
one another. Such an experiment is illustrated in Figure 4 (identified with an open dot in
Figure 3b). The first timeslice (10.1 Myr) shows the exhumation of a first MCC (dome 1)
and the incipient development of a graben (graben 2) which later evolves into a new
MCC (dome 2 in timeslices 15.2 and 20.1 Myr). The graben is located away from the first
dome (~165 km) and related shear zones (SZ1 and SZ2). While the second dome
develops, new shear zones form (SZ3 and SZ4). The tips of SZ2 and SZ3 are in mutual
contact but the two shear zones do not overlap, therefore SZ3 does not reactivate SZ2.

Similar features are obtained for the relations between dome 2 and dome 3 and between
SZ4 and SZ5 (Fig. 4). We refer to this situation as a case where the MCCs remain
independent, in the sense that there is no kinematic interference between them.

Nevertheless, a dynamic interference is likely, because the development of a first dome
reduces the potential of lower crustal flow, thereby limiting the development of
subsequent domes.

The general MCCs mode is obtained for conditions favouring the existence of a
weak lower crust, with either a thick crust or a thin lithosphere (both conditions leading
to high temperature conditions at the Moho) or both (Fig. 3b). In the extreme case (red marker), a huge MCC is obtained (Fig. 3c). As seen in Figure 3a, a low-strength sub-Moho mantle appears to be another necessary condition for obtaining a MCCs mode of extension with a flat Moho, as already suggested by Buck (1991). This agrees with the results obtained in a different parametric study (with a boundary velocity of 0.66 cm/yr) by Tirel et al. (in press), who found that the development of MCCs requires an initial Moho temperature of 800°C or higher. At these temperatures, both the sub-Moho mantle and the lower crust have low strengths and viscosities of the order of 10^{19}-10^{21} Pa.s. Figures 3a and 3b suggest that a sub-Moho mantle with a strength of only ~ 250 MPa is enough to prevent the formation of MCCs. In addition, to obtain a MCCs mode of extension, an initial crustal thickness of at least 40 km seems required (Fig. 3b). In a thinner crust, lower crustal flow is probably hampered by the limited amount of material able to flow.

Finally, the transitional mode (green marker) is characterized by the development of MCCs of moderate size closely followed by the formation of an ocean floor (Fig. 3c), or by the formation of pseudo-MCCs showing a substantial rise of the Moho, eventually followed by the formation of an ocean.

2.2. Experiments with interfering MCCs

The conditions leading to interfering MCCs have been further investigated through a second series of experiments, in order to determine the effects of the initial crustal thickness and the boundary velocity (Table 1) on the three main properties directly
comparable with geological and geophysical data; the width of the dome, the duration of
dome development and the final Moho depth. The three first experiments leading to
interfering MCCs have been performed with initial crustal thicknesses of 40, 44 and 50
km, an initial thermal lithospheric thickness of 60 km and a boundary velocity of 2.0
cm/yr (Table 1) (Fig. 3b). In addition, six experiments have been carried out with an
initial crustal thickness of 44 km, an initial thermal lithospheric thickness of 60 km and
boundary velocities of 1.0, 1.33, 1.66, 2.33, 2.66 and 3.0 cm/yr (Table 1). Three of these
experiments show interfering MCCs. In all the experiments displaying interfering MCCs,
the domes develop in sequence (one after the other). The results of the two series of
experiments are shown and discussed below.

A - Description of two experiments

The sequential development of interfering MCCs is illustrated in Figure 5 with
two experiments having an initial crustal thickness of 44 km, an initial depth of the
1330°C isotherm of 60 km and a boundary velocity of 2.0 cm/yr (type 1 experiment,
corresponding to the yellow marker in Figure 3) or 2.33 cm/yr (type 2 experiment). These
two experiments document a similar process, differing only in terms of distance between
adjacent MCCs. The model setup is shown in Figure 2. At the onset of extension, the
effective viscosity of the sub-Moho mantle and the lower crust is very low (10^{19}-10^{20}
Pa.s) and the two layers are coupled. Experiment of type 1 has been chosen to illustrate
the entire process of exhumation. Since the process is the same, only the last stages of the
second experiment are shown. The images have been truncated in order to focus on the
most important crustal structures. Only a window of 280 km x 50 km is shown. In
addition to those visible in Figure 5, other domes are exhumed during each experiment,
but do not interfere with one another. These independent MCCs are not shown here,
nevertheless, they bear similar characteristics as those seen in Figure 4. The ages are
relative to the onset of extension.

The first timeslice of type 1 experiment, at 7.0 Myr (Fig. 5a, b, c), shows a
simultaneous localization of strain in the upper and lower crust. The structure defines a
symmetrical graben in the brittle crust (graben 1) and two major conjugate shear zones
(SZ1 and SZ2) in the ductile middle crust (Fig. 5b, c). The two shear zones are flat-lying,
located at depths around 22-25 km. A third shear zone (SZ3) develops below SZ2 at the
Moho interface (Fig. 5b, c). At this stage, the ductile middle-lower crust already rises
toward the surface (Fig. 5a).

The second timeslice, at 11.4 Myr, shows the development of an asymmetric
dome (dome 1) following the extreme thinning of the upper crust (Fig. 5a). Middle and
lower crustal levels have reached the surface and active deformation is localized mainly
on the right side of the dome (Fig. 5b, c). SZ2 displays a sigmoidal shape of three parts:
flat on the dome top, steeply dipping on the right dome limb and flat again in the lower
crust (Fig. 5c). This forms the detachment shear zone observed at the roof of the
metamorphic dome. The isotherms rise asymmetrically with respect to the dome apex
(Fig. 5a), which confirms the localization of deformation along SZ2. The right side of the
dome now forms the zone of lowest topography, and is a likely locus for a
supradetachment basin superimposed on initial graben formation. SZ3 shows a shape
similar to SZ2 but does not reach the surface. SZ3 is near-horizontal at the Moho and
steeply inclined inside the dome. While still active, SZ1 has not significantly changed in shape or depth since the beginning of deformation.

At 15.3 Myr, dome 1 continues to develop with a recumbent-like fold shape (Fig. 5a). Flattening of this structure is also observed in the shape of SZ2 and SZ3 (Fig. 5c). Nevertheless, the pattern depicted by the strain rate remains stable (Fig. 5b). Further left, a slight rise of the lower crust is observed (Fig. 5a), accompanied by a slight rise of SZ1 (Fig. 5c). It is related to localization of deformation in the brittle crust leading to formation of a second graben (graben 2, Fig. 5a, b). It is noteworthy that, in this experiment, graben 2 is located right above one of the previously formed shear zones (SZ1), at variance with the situation in experiments displaying independent MCCs (Fig. 4b). In all the experiments showing a sequential development of domes, the smaller secondary dome originates from necking of the upper crust in a stage where the crustal thickness stands between 28 and 32 km and the Moho temperature is between 750 and 810°C.

At 17.4 Myr, the shape of dome 1 has not significantly changed and the strain rate pattern indicates that active deformation has strongly decreased there, especially along SZ1 (Fig. 5a, b). A second dome (dome 2) begins to develop symmetrically, dragging SZ1 toward the surface (Fig. 5c). SZ1 is splitted into two branches located on both limbs of dome 2 (SZ11 and SZ12, Fig. 5b, c). SZ12 reactivates SZ1 with an opposite, top-to-the-right sense of shear.

At 20.8 Myr, the isotherms have deepened and flattened, documenting advanced cooling of both domes (Fig. 5a). The strain rate pattern indicates an overall strong decrease in active deformation (Fig. 5b).
The initial conditions in type 2 experiment are the same as before except for the boundary velocity, which is slightly higher. Only the three last stages are shown here (Fig. 5d, e, f). The second dome is smaller and develops closer to the first dome than in the previous experiment. As a result, there is no lid of upper crust left between the two domes. Otherwise the two experiments show similar characteristics. In both cases, the Moho remains sub-horizontal throughout the extensional process and reaches the depth of ~25 km when the exhumation of MCCs has ended.

B - Analysis of the two experiments

Figure 6 depicts schematically the sequential development of interfering MCCs, based on the results shown in Figure 5. As previously discussed by, e.g., Tirel *et al.* (2004a; in press), the development of MCCs may be characterized by two main stages: 1) upper crustal necking (graben formation) accompanied by the formation of flat-lying conjugate shear zones in the lower crust (Fig. 6a), followed by 2) exhumation of the dome (amplification and widening) owing to the connection, at mid-crustal depths, of the faulted graben with one of the lower crustal shear zones, forming the main detachment zone (Fig. 6b).

Upper crustal necking results in a reduction of the vertical lithostatic load, which induces a horizontal pressure gradient. Due to this gradient, the most ductile material at depth flows horizontally toward the area of necking. We use the term inward flow to describe this feature (cf. Brun & Van den Driessche 1994). Inward flow is commonly described in MCC models as a process responsible for a flat Moho geometry (Block &
Royden 1990; Wdowinski & Axen 1992; Wernicke 1992; Brun & Van Den Driessche 1994; Tirel et al. 2004a; in press; Gessner et al. 2007). In our experiments, horizontal flow of the lower crust occurs over distances several times larger than the width of the dome and is responsible for the development of horizontal shear zones. Two convergent channel flows are systematically obtained, resulting in two conjugate flat-lying shear zones (SZ1 and SZ2, Figs 5 & 6). High strain intensities are also found within SZ3, which follows the Moho but bends upward beneath the dome apex. This particular shape is associated with fast and relatively focused rise of lower crustal material during dome amplification.

Still in the experiments, shearing due to inward flow occurs at the interface between a lower part of the crust where rocks are weak enough to flow pervasively, and an upper part where rocks are too strong to undergo significant deformation (while SZ3, at greater depth, is a mirror effect along the Moho boundary). This interface has a certain thickness, corresponding to the domain where rocks can undergo ductile shearing, in between the isotherms 450 and ~ 650°C (Fig. 5c). This thickness depends also partly on the resolution of the experiments. As seen in Figure 3a, we obtain a temperature of the transition between ductile and brittle behaviours of ~ 300°C for quartz diorite, which is the rock type we have chosen to represent the crust as a whole (note that, in our experiments, this temperature is not imposed but arises from the combination of the brittle and ductile rheological laws). Thus, in the simulations, shearing due to inward flow occurs at significantly greater depths than the ductile-brittle transition (that is, at temperatures at least ~ 150°C higher, corresponding to a difference in depth of about 6 km in the case of type 1 experiment, cf. the yellow marker of Figure 3). On the one hand,
this difference is consistent with the shape of the strength profiles shown in Figure 3a, in which the brittle-ductile transition coincides with a peak in strength. In this case, shearing along the roof of a lower crustal channel may be expected to occur more readily significantly below the brittle-ductile transition. This agrees with the observation that, in Figure 3a, the temperature of 450°C coincides with the point of inflexion along the ductile segment of the strength profile, hence marking a relatively abrupt transition between the strong ductile crust, above, and the weak one, below. Gautier et al. (2008) reached similar conclusions from the analysis of a MCC in Central Anatolia, in which shearing due to lower crustal flow is readily identifiable because of its distinct trend with respect to normal-sense shearing along the main detachment. In this example, shearing associated with lower crustal flow is not recorded at temperatures lower than about 450°C. On the other hand, several authors have argued that rocks immediately beneath the ductile-brittle transition may represent a low in the strength profile of the crust after a certain amount of strain is accumulated, so that this level could be used as a décollement (e.g. Handy 1989; Gueydan et al. 2004). If so, then it is conceivable that the roof of the shear zone overlying the lower crustal channel may coincide with the ductile-brittle transition, a situation that our experiments cannot feature. It is also worth reminding that our model setup considers the crust as homogeneous; a compositionally layered crust could result in a distinct picture, with a different depth distribution of the shear zones.

The second MCC follows the same two-stage development as described above. Figures 6c and 6d and Figures 6e and 6f depict the results obtained in the type 1 and type 2 experiments, respectively, the main difference being the distance between the two domes. In both cases, localization of the second graben occurs right above SZ1 which
formed during the development of the first dome. This preexisting structure is dragged
toward the surface during the amplification stage of the second dome. In addition,
renewed inward flow leads SZ1 to be reactivated with a similar sense of shear on the left
dome limb (SZ11) but with an opposite sense of shear on the right dome limb (SZ12).
This, in turn, hampers inward flow and temperature advection toward dome 1, favouring
its cooling and increase in strength (cf. Fig. 5a, b). Widening of the second dome is
limited because of the strong crustal thinning already achieved. Since the second dome
remains small, shearing along SZ12 probably involves less strain than earlier,
kinematically opposite shearing along SZ1 does (see also Fig. 5b). Hence, relics of the
first event should be found along the shear zone. In the end, the strength of the crust is
too high to enable lower crustal flow any longer. If extension is to continue due to
unchanged boundary conditions, it must proceed without MCCs being further developed.
Until that stage, the Moho remains almost flat throughout the exhumation process. This is
due to coherent ductile deformation between the lower crust and the sub-Moho mantle
(see also Tirel et al. in press).

C - . Role of the initial crustal thickness and the boundary velocity

Figure 7 synthesizes the effects of modifying the initial crustal thickness or the
boundary velocity on three measurable aspects of each experiment. The results shown are
only from the experiments that yield interfering MCCs. The output parameters are the
width of the domes (measured at the surface), the time needed to exhum the first dome
(and, combining the domes, the duration of MCC-type extension), and the final depth of the Moho.

The width of the first dome (between 24 and 110 km) and the duration of its exhumation (between 11 and 24 Myr) increase with increasing initial crustal thickness and decreasing boundary velocity (Fig. 7a, b, c, d). Note that the huge dome obtained for an experiment with a 60 km-thick crust (Fig. 3b, c) is consistent with this trend.

The width of the second dome (between 15 and 30 km) and the duration of its exhumation (between 5 and 8 Myr) are much less variable than they are for the first dome. As quoted in section 2.2.A, in all experiments, the second dome originates from necking of the upper crust in a stage where the crustal thickness lies in a narrow range, between 28 and 32 km. Hence, the width and timing of exhumation of the second dome are not directly related to the initial conditions of the experiment but to those once the first dome has essentially formed. This is consistent with the view that widening of the second dome, which depends on the possibility of renewed inward flow, is limited by the amount of crustal thinning already achieved during the development of the first dome, which itself is a function of the initial crustal thickness. In other words, the ability of the first dome to absorb a large volume of weak lower crust is proportional to the volume initially available, so that the amount of weak material left for the second dome is always nearly the same.

Combining the timing of exhumation of both domes, a duration of MCC-type extension is obtained, ranging between 16 and 32 Myr (Fig. 7c, d). The width of the whole complex made up of two adjacent domes is not plotted here. This width is related to the width of the domes but also to the distance between them. This distance is variable
(cf. the difference between type 1 and type 2 experiments) but does not show a clear correlation with the initial crustal thickness or the boundary velocity.

After exhumation of the two domes, the Moho interface is always nearly flat. The final Moho depth (between 22.5 and 29 km) increases with increasing initial crustal thickness and with decreasing boundary velocity (Fig. 7e, f).

3. Geology of the Cyclades

The above two-dimensional numerical experiments suggest that, for certain conditions, MCCs may develop in sequence during continental lithospheric extension. Extrapolated to a three-dimensional setting, the corresponding region should be characterized by the development of several parallel or subparallel chains of MCC. Although such a situation may be encountered in several regions worldwide (see Introduction), we will here focus on the Cyclades archipelago because, in our view, this is the area where the existence of parallel chains of MCC has been best documented so far. In this section, we review the structural and metamorphic evolution of the Cyclades (see also Fig. 8), focusing on features that allow comparison with our numerical results.

Since the seminal paper of Lister et al. (1984), many studies have focused on the identification of extensional detachments and metamorphic core complexes in the Cyclades (e.g. Urai et al. 1990; Buick 1991; Gautier et al. 1993; Gautier & Brun 1994a; Vandenberg & Lister 1996; Forster & Lister 1999; Jolivet & Patriat 1999; Kumerics et al. 2005; Iglseder et al. 2006; Müller et al. 2006). During extension, rocks that previously recrystallized in high-pressure/low-temperature conditions were exhumed from the
conditions of a greenschist facies or higher grade overprint to the conditions of brittle deformation. Granitoid intrusions also emplaced during extension (e.g. Altherr et al. 1982). Time constraints indicate that these structures are broadly Miocene in age, most authors agreeing on the view that they formed during Aegean ‘back-arc’ (or post-orogenic/post-thickening) extension. Lister et al. (1984) initially proposed that extension was controlled by a single south-dipping detachment zone on the scale of the Cyclades archipelago, however subsequent studies have documented a more complex structural pattern.

3.1 The Cyclades as a coherent domain during Miocene extension

Because the orientation of extension-related stretching lineations and subsequent normal faults shows a fairly abrupt change across the archipelago, it is tempting to subdivide the Cyclades into two domains. The direction of maximum stretching is NE-SW to ENE-WSW in the northwestern islands, and N-S in the southeastern islands (Gautier & Brun 1994a) as well as on Ikaria (Kumerics et al. 2005). The boundary between these two domains coincides with a NE-SW-trending fault zone extending from west of Ikaria to east of Sifnos, with probably a significant wrench (dextral) component of movement along it (Gautier & Brun 1994a; Gautier 1995). This fault zone has been named the Mid-Cycladic Lineament (MCL) by Walcott & White (1998). Opposite rotations across the fault zone, as documented by paleomagnetic data on middle Miocene intrusions on Naxos, Mykonos and Tinos (Morris & Anderson 1996; Avigad et al. 1998), confirm the importance of the MCL and are consistent with the view that the divergent...
pattern of lineations seen on the scale of the Cyclades relates originally to a uniform NNE-SSW direction of stretching (Gautier & Brun 1994b; Walcott & White 1998; Gautier et al. 1999; Jolivet et al. 2004). This view is also consistent with the pattern of rotations on the scale of the whole Aegean region (van Hinsbergen et al. 2005b). Gautier & Brun (1994b) suggested that a rectilinear horst-and-graben system initially occupied the Central Aegean region and underwent progressive bending due to radial spreading of the Aegean lithosphere. Analogue experiments further showed that the presence of a thin layer of sand (simulating the brittle behaviour of the upper crust) at the top of a spreading sheet is a condition sufficient to produce a pattern of oppositely rotated blocks separated by a sharp boundary equivalent to the MCL (Gautier et al. 1999). Therefore, the MCL can be seen as a structure accommodating lateral variations in the rotation field of the Central Aegean region during regional extension. In contrast, Pe-Piper & Piper (2006) recently proposed a series of palinspastic reconstructions of the Aegean domain in which they assume ~ 100 km of sinistral displacement along the MCL during the Miocene (from 17 to 5 Ma, mostly). This would imply that the Central Aegean region actually consists of two domains that were far distant from each other during early stages of core complex-type extension (Pe-Piper & Piper 2006, their figures 2 & 13). However, on account of the similarity of lithologies, tectonometamorphic evolution, and timing of exhumation of rocks on both sides of the MCL, our opinion is that the total offset across the MCL must be minor, in agreement with Walcott & White (1998).

3.2 How many MCC and detachment systems in the Cyclades?
A number of observations imply that several MCCs coexist in the Cyclades. Most islands have the geometry of a metamorphic dome defined by the orientation of foliations, occasionally also by lithological contours, and more rarely by a concentric pattern of isograds (Naxos and Paros). On several islands, a composite unit made of rocks that experienced no or limited metamorphism during the Cenozoic, rests upon the flanks of the metamorphic dome. This contact usually bears the characteristics of an extensional detachment zone having accommodated the exhumation of the footwall rocks starting from the depths of greenschist facies and locally higher temperature metamorphism (e.g. Lister et al. 1984; Urai et al. 1990; Gautier et al. 1993; Gautier & Brun 1994a; Jolivet & Patriot 1999; Jolivet et al. 2004; Mehl et al. 2005; Müller et al. 2006; Grasemann et al. 2007). Therefore, each metamorphic dome may be described as a MCC. However, the Cyclades have also experienced Messinian-Quaternary high-angle faulting, with normal faults usually dipping away from the islands (e.g. Angelier 1977; Gautier & Brun 1994a), so that it may be asked whether drag folding along these late faults could alone have produced the dome shape of some of the islands. This is unlikely at least on Naxos, Paros and Ios, where the domes are pronounced and regular (e.g. van der Maar & Jansen 1983; Gautier et al. 1993). Occasionally, low-angle normal fault zones also dissect the islands and make the identification of a metamorphic dome more difficult, like on Syros (Ridley 1984). In the southeastern Cyclades, some of these fault zones accommodate a component of transverse (E-W) extension, like on Naxos and Paros (Gautier et al. 1993) and on Ios (the Coastal Fault system of Forster & Lister 1999). These domes are elongated parallel to the dominant N-S direction of stretching, therefore E-W extension may simply relate to down-dip slip along the dome flanks.
A critical question is whether distinct MCC found along a section parallel to extension were initially associated with a single detachment zone, as Lister et al. (1984) suggested, or formed beneath distinct detachment zones (Gautier & Brun 1994b). Gautier & Brun (1994a, b) and Gautier (1995) argued that, on several islands, a specific distribution of kinematic indicators could be seen, like on Tinos, Andros, central southern Evia, Ios and, to a lesser extent, Syros. They described the ductile deformation associated with greenschist facies metamorphism as non-coaxial, with a top-to-north (or NE) sense of shear in the northern (or northeastern) part of these islands, and a top-to-south (or SW) sense of shear in the southern (or southwestern) part. On Tinos and Andros, the domain with top-to-SW shearing is restricted to a few outcrops along the southwestern coast, so that the corresponding domes appear asymmetric with respect to the shear sense pattern (i.e., top-to-NE shearing dominates). According to Gautier & Brun (1994a, b), the sense of shear is inverted across a ~1 km-wide zone trending subperpendicular to the mean stretching lineation. Within it, conjugate patterns of shear bands and symmetric boudinage structures dominate, so that this zone may be viewed as a narrow domain of coaxial strain at the transition between two domains with opposite kinematics. Further investigations on Tinos and Andros led Jolivet & Patriat (1999) to modify this description (see also Jolivet et al. 2004; Mehl et al. 2005). According to these authors, the coastal outcrops showing top-to-SW shearing should not be considered as a distinct entity but belong to a domain of coaxial strain significantly wider than previously presumed, beside the domain showing uniform top-to-NE shearing. Gautier & Brun (1994a, b) interpreted the above pattern as reflecting the dynamics of the ductile lower crust in response to isostatic rebound and dome amplification beneath a contemporaneous detachment zone.
(that is, the process of ‘inward flow’ discussed herein). A different opinion is shared by Jolivet & Patriat (1999) and Jolivet et al. (2004), who interpret the juxtaposed domains of coaxial and non-coaxial strain as reflecting the configuration in the middle crust, around the brittle-ductile transition zone, during early stages of extension. This interpretation, first proposed by Jolivet et al. (1991) for Alpine Corsica, has been acknowledged to satisfactorily account for the kinematic pattern observed in southernmost Evia (Gautier & Brun 1994a; Gautier 1995). With further extension, the main extensional shear zones of the middle crust evolve into typical extensional detachments (Jolivet et al. 2004).

However, a potential problem with this interpretation is the presence, in southern Tinos, of a large klippe (or ‘extensional allochton’) of the same unit that forms the hangingwall of the detachment zone in the northeastern part of the island. This klippe rests entirely onto the domain of coaxial strain defined by Jolivet & Patriat (1999). While this feature is normal in the model invoked by Gautier & Brun (1994a, b) (see also Brun & Van den Driessche 1994), it is unexpected in that of Jolivet & Patriat (1999), even after a large amount of displacement is achieved along the detachment (cf. Jolivet et al. 2004, their figure 13). Because well preserved eclogites and blueschists are found slightly beneath the klippe, and by analogy with the situation on Syros (see section 3.3), Trotet et al. (2001a) and Mehl et al. (2005) suggested that the intervening contact represents an extensional detachment significantly older than that seen in the northeastern part of the island (at a distance of only 5 km). However, since the rocks in between belong to the same footwall unit with low-dipping foliations, this hypothesis does not readily help to solve the problem: the contact in the south occupies the same structural position, therefore it must have been reactivated (if not entirely developed) during shearing along
the northeastern detachment, and is most probably connected with it. For this reason, and on account of the numerical results obtained in this study, our opinion is that the interpretation of Gautier & Brun (1994a) remains a viable alternative to the one of Jolivet & Patriat (1999).

In any case, taking into account the report of top-to-NE/ENE shearing in northern and eastern Syros during greenschist-facies metamorphism (Gautier 1995; Trotet et al. 2001a; Rosenbaum et al. 2002), the domain of coaxial strain in southwestern Tinos and Andros strongly suggests that Tinos and Syros islands already related to distinct metamorphic domes at that time. As a consequence, the Tinos detachment and the detachment seen in southeastern Syros, bearing a similar hangingwall rock content (Maluski et al. 1987; Patzak et al. 1994), are probably distinct shear zones from the beginning (Gautier & Brun 1994b). By analogy, it can be suspected that three parallel detachment systems have developed in the northwestern Cyclades during Miocene extension, correlated with the three NW-SE-trending chains of islands seen at present, namely southern Evia-Mykonos, Gyaros-Syros, and Kea-Sifnos (Gautier & Brun 1994a; Jolivet et al. 2004). The Evia-Mykonos chain is clearly dominated by top-to-NE ductile to brittle shearing, therefore it was controlled by a NE-dipping detachment zone. In contrast, the kinematics of extensional deformation is not so clearly asymmetric in the case of the Gyaros-Syros chain. While top-to-NE/ENE shearing dominates in the eastern part of Syros, there is no consensus among authors concerning the island as a whole. According to Trotet et al. (2001a), a continuum of top-to-ENE shearing is recorded throughout the island from the conditions of high-pressure metamorphism to those of an uneven greenschist facies overprint. A few major shear zones would have localized
extensional shearing to the point that interlayered metamorphic subunits record significant differences in their pressure-temperature path (Trotet et al. 2001b). According to Trotet et al. (2001a, b), the same holds for Sifnos Island. While agreeing with a continuum of extensional deformation from blueschist to greenschist facies conditions, Bond et al. (2007) recently questioned the existence of these prominent shear zones on Syros and argued that extensional deformation was dominantly coaxial throughout the synmetamorphic exhumation history. Kinematic data reported by Gautier (1995) and Trotet et al. (2001a) do not show a dominant sense of shear on the scale of Syros Island (apart from dominantly top-to-NE/ENE shearing in the eastern part), apparently supporting the hypothesis of Bond et al. (2007). Finally, the southwestern chain of islands, from Kea to Sifnos, is the least known of the Cyclades (Sifnos excluded). Nevertheless, according to Walcott & White (1998) and recent work by Grasemann et al. (2007), Miocene top-to-SW/SSW extensional shearing dominates on Kea, Kythnos and Serifos, therefore these three islands are probably controlled by a major SW-dipping detachment zone. In contrast, according to Trotet et al. (2001a), Sifnos displays dominantly top-to-NE extensional shearing, hence it is probably unrelated to this detachment.

In the southeastern Cyclades, no domain of coaxial deformation has been found on Naxos and Paros Islands, where extensional shearing is consistently top-to-north (Urai et al. 1990; Buick 1991; Gautier et al. 1993). Moving toward northwestern Paros, a strong (~70°) but progressive clockwise rotation of the stretching lineation is observed (Gautier et al. 1993), which is thought to relate to dextral shearing along the Mid-Cycladic Lineament (Gautier & Brun 1994a). On Ikaria, almost all kinematic data
reported by Kumerics et al. (2005) also indicate top-to-north shearing. In contrast, the
case of Ios appears more complex. Lister et al. (1984) initially reported mylonitic rocks,
with top-to-south kinematic indicators, which they attributed to a ductile extensional
detachment named the South Cyclades shear zone. Lister et al. (1984) and, more recently,
Vandenberg & Lister (1996) and Forster & Lister (1999) have considered that this ~ 200
m-thick shear zone is the main structure accommodating Neogene extension on Ios. If
this hypothesis is correct, then the Ios and Naxos MCC clearly relate to two distinct
(antithetic) detachment zones. However, Gautier & Brun (1994a) have shown that large
domains with top-to-north kinematic indicators are also found in the northern limb of Ios
dome. While acknowledging that the sense of shear is dominantly top-to-south on Ios (at
variance with the case on most islands), Gautier & Brun (1994b) favoured an
interpretation in which the Ios MCC formed in the footwall of a north-dipping
detachment. They argued that, even in this case, the Ios and Naxos MCC are probably
related to two distinct (though synthetic) detachments, because (1) the two domes are
well defined, so that drag folding along a late normal fault in between the two islands is
unlikely to have produced this division (especially since there is no evidence for such a
fault in the bathymetry nor in the Messinian-Quaternary sedimentary record), (2) pressure
conditions associated with greenschist facies metamorphism are similar from southern
Naxos to Ios, and are probably even lower on Antiparos, an unexpected feature in the
hypothesis of a single north-dipping detachment. Therefore, along a section going from
Naxos to Ios, two distinct detachment systems are required. But was Ios truly dominated
by non-coaxial deformation during Miocene extension, with either a south-dipping (Lister
et al. 1984; Forster & Lister 1999) or a north-dipping (Gautier & Brun 1994b) main
The top-to-north kinematic indicators reported by Gautier & Brun (1994a) are associated with high-strain ductile deformation and are found both beneath (e.g., their figure 3b) and above the south-vergent South Cyclades shear zone of Lister et al. (1984). Vandenberg & Lister (1996) acknowledged that the kinematics of extensional deformation in northern Ios is actually complex (cf. their figure 11), while Forster & Lister (1999) admit that top-to-north shear zones do exist, associated with mylonitic fabrics. Unlike Vandenberg & Lister (1996), Forster & Lister (1999) report these shear zones as cutting across the South Cyclades shear zone. They interpret them as reflecting down-dip shearing along the back-tilted flank of the MCC after significant arching of the main shear zone (cf. Reynolds & Lister 1990). This interpretation is questionable, however, because Forster & Lister (1999) indicate that these crosscutting relations are observed within augengneiss that occupy the core of the Ios MCC, in which the main fabric may well relate to pre-extensional events (e.g. Vandenberg & Lister 1996).

Conversely, Vandenberg & Lister (1996) suggested that the South Cyclades shear zone cuts across the north-dipping detachment zone of Naxos, yet acknowledging that available geochronological data on synkinematic intrusions do not support this scenario.

Altogether, these features suggest that top-to-north and top-to-south extensional shear zones on Ios are broadly contemporaneous, and that there may be no dominant sense of shear on the scale of the island during Miocene extension. Vandenberg & Lister (1996) and Forster & Lister (1999) also mapped a series of low-angle normal faults capping the South Cyclades shear zone, associated with chloritization and brecciation (the Ios Detachment Fault system of Forster & Lister 1999). They consider that this fault system reflects ongoing shearing along the South Cyclades shear zone during cooling and
exhumation, so that the faults are reported to have the same top-to-south kinematics. However, field evidence in favour of this interpretation is scarce. The fault system is recognized mainly in the northern limb of the dome, where the normal faults dip northward and are thus assumed to have been tilted into the attitude of apparent thrust faults during subsequent arching. However, if the top-to-north ductile shear zones also developed in response to arching, as argued by Forster & Lister (1999), then arching was already effective while the rocks were still in the conditions of ductile deformation, therefore later brittle normal fault zones could hardly have rotated through the same process. We conclude that further work is needed to check whether the ‘Ios Detachment Fault system’ is associated with top-to-south or top-to-north kinematics. Summarizing, like the northwestern Cyclades, the southeastern Cyclades seem to include three parallel detachment systems developed during Miocene extension, correlated with the three E-W-trending chains of islands seen at present, namely Ikaria-Samos, Paros-Naxos, and Folegandros-Ios (Gautier & Brun 1994a). The two northern chains are controlled by a north-dipping detachment zone, while the deformation pattern on Ios suggests that the southern chain has no marked asymmetry. The central chain (i.e. the islands of Naxos and Paros) displays the deepest structural levels of the Cyclades, in the form of two large domes cored with migmatites (e.g. Gautier et al. 1993; Jolivet et al. 2004).

3.3 Interfering detachment systems

Using available pressure estimates for greenschist facies and locally higher temperature metamorphism and taking into account the present geometry and distribution of
metamorphic domes in the Cyclades, Gautier & Brun (1994b) and Gautier (1995) came to the conclusion that, along at least three transects parallel to stretching (Tinos-Syros, Paros-Sikinos, Naxos-Ios), the different detachment zones and associated MCC are partly superimposed and, therefore, probably interfere with one another. They discussed two possible evolutionary models incorporating a genetic link between successive synthetic detachment zones. A scenario was finally favoured, in which a second detachment develops in the footwall of the first one, giving rise to a secondary MCC formed in the rear flank of the first one (Gautier & Brun 1994b, their figure 10). It is worth noting that this scenario bears some resemblance with the numerical simulations obtained in this study. Nevertheless, the scenario has specific aspects that deserve a few comments. Firstly, the second detachment zone was thought to arise from prolonged shearing along a fault zone formed during the development of the first MCC (the ‘Listric Accommodation Fault’ (LAF) seen in the analogue experiments of Brun et al. 1994). As a result, the secondary MCC is expected to show a marked asymmetry. It is not clear whether the present numerical approach is precise enough to feature a LAF in the brittle upper crust, therefore the mechanical background for the development of a secondary MCC in the simulations may be quite different; coincidentally, we obtain no clear asymmetry for the secondary MCC. Secondly, the scenario incorporates the fact that the two MCC should interfere, with reference to the three quoted transects (for this reason, the LAF was drawn closer to the first detachment than it is in the experiments of Brun et al. 1994). Gautier & Brun (1994b) further pointed out that, with ongoing extension, the scenario may ultimately result in a complete omission of the wedge of upper crustal rocks that initially formed in the rearmost part of the first MCC. They claimed that this feature compares
well with the situation in the Cyclades, where no such wedge of upper crustal rocks is exposed on the islands. However, the latter point depends on the interpretation that is made of segments of the metamorphic pile exposing well-preserved eclogites and blueschists, as on Syros and Sifnos. Following the opinion of Avigad (1993) and Wijbrans et al. (1993) for the case of Sifnos, Trotet et al. (2001a) have proposed that high levels of the metamorphic pile on these two islands escaped pervasive retrogression because they were exhumed earlier. An apparent support to this interpretation is the fact that, on Sifnos, radiometric data from these levels provide significantly older ages than lower levels with intense greenschist facies retrogression (Altherr et al. 1979; Wijbrans et al. 1990). As a result, high levels of the metamorphic pile may have been part of the upper crust by the time the rest of the pile underwent extensional deformation associated with greenschist facies metamorphism (Avigad 1993; Trotet et al. 2001a; Parra et al. 2002). If so, the claiming of Gautier & Brun (1994b) that no wedge of upper crustal rocks exists in the Cyclades is incorrect, and it is not so clear whether adjacent MCCs interfere or not. For instance, much of Syros would represent such upper crustal rocks, and the same may apply to Ios, where high-pressure rocks are relatively abundant in the envelope of the dome, above the South Cyclades shear zone of Lister et al. (1984), displaying similarly ‘old’ ages as on Syros and Sifnos (van der Maar & Jansen 1983).

According to the interpretation of Trotet et al. (2001a, b), important extensional shear zones should exist (and are reported to do so) within the metamorphic pile of Syros and Sifnos (see also Avigad 1993). In addition, the topmost detachment fault seen in southeastern Syros, with Cretaceous metamorphic rocks in the hangingwall (Maluski et al. 1987) and well preserved high-pressure rocks in the near footwall, should represent a
relatively old structure. However, in the case of Syros, Bond et al. (2007) claim that the intermediate extensional shear zones do not exist and, like other authors have argued for Sifnos and Tinos Islands (Schliestedt & Matthews 1987; Bröcker 1990; Ganor et al. 1996), maintain that the degree of preservation of the high-pressure assemblages reflects primarily the extent of fluid infiltration during greenschist facies retrogression. Limited fluid infiltration and deformation may also account for the preservation of older ages while the rocks pass through P-T conditions of the greenschist facies, as proposed by Wijbrans et al. (1990) in the case of Sifnos (see however Wijbrans et al. 1993). This is particularly clear on Tinos, where the rocks with the best preserved high-pressure assemblages (with ages around 45-37 Ma) lie at the same structural level as those showing a complete greenschist overprint (with ages around 33-21 Ma; Bröcker & Franz 1998; Parra et al. 2002). In this particular case, the extent of retrogression is apparently linked with the intensity of shearing during greenschist facies metamorphism (Jolivet & Patriat 1999; Parra et al. 2002). The same may hold for Syros (Bond et al. 2007) and, eventually, Sifnos (Wijbrans et al. 1990). Rosenbaum et al. (2002) also consider that, in northern Syros, at high levels of the metamorphic pile, greenschist facies overprint is localized into top-to-NE shear zones that are contemporaneous with Miocene extensional shearing in neighbouring islands. As for the detachment in southeastern Syros, its timing is poorly constrained. Trotet et al. (2001a) use a 40Ar/39Ar white mica age obtained close to the contact (30.3±0.9 Ma; Maluski et al. 1987) to infer that the detachment was active at that time. Doing so, they accept the idea that the detachment was at least reactivated within the time range obtained for greenschist facies assemblages on Tinos. Moreover, Maluski et al. (1987) report this age from an omphacitic metagabbro and mention that the
obtained spectrum shows evidence for an inherited component, while Trotet et al. (2001a) mention that the actual detachment contact is marked by breccias reworking eclogites retrograded into the greenschist facies. This suggests that at least part of the displacement along the detachment occurred significantly later than 30 Ma, that is, about the same time as in other islands (e.g. Gautier & Brun 1994a). Altogether, these features suggest that, in the Cyclades as a whole, well-preserved high-pressure rock assemblages represent low-strain lenses of variable size embedded into a single layer of greenschist facies metamorphism dating from the Late Oligocene-Early Miocene. This interpretation may apply to most islands (e.g. Wijbrans et al. 1990; Parra et al. 2002; Bond et al. 2007), Ios included (Forster & Lister 1999). It remains that, on Syros and Sifnos, an upward gradient of preservation of the high-pressure assemblages exists across the ~3 km-thick metamorphic pile (e.g. Wijbrans et al. 1990; Trotet et al. 2001a). We suggest that this gradient reflects the transition from pervasive deformation, below, to more localized deformation, above, within the layer of greenschist facies metamorphism. In other words, greenschist facies metamorphism in the middle crust would coincide with the broad transition from pervasive (ductile) to localized (ductile to brittle) deformation across the thickness of the crust, in good agreement with the views of Jolivet & Patriat (1999) and Jolivet et al. (2004).

3.4 Post-orogenic versus syn-orogenic extension

The numerical simulations presented in this paper are concerned with the case of whole-lithosphere extension. As stated above, most authors having identified extensional
detachments and metamorphic core complexes in the Cyclades interpreted them as resulting from Aegean ‘back-arc’ extension (Lister et al. 1984; Buick 1991; Gautier & Brun 1994b; Jolivet & Patriat 1999), thus apparently fitting the experimental setup. These structures developed within metamorphic rocks that previously experienced high-pressure/low-temperature conditions, therefore extension may also be described as ‘late-orogenic’ (Gautier & Brun 1994b). However, for the purpose of a comparison with the numerical results, it needs to be discussed whether the extensional structures developed strictly after crustal thickening or/and during ongoing thrusting beneath the locus of extension. In the Aegean, these two cases have been referred to as post vs. syn-thickening, or post vs. syn-collisional, extension (Gautier & Brun 1994b), or post vs. syn-orogenic exhumation/extension (Jolivet & Patriat 1999; Trotet et al. 2001a; Parra et al. 2002; Jolivet et al. 2003), the latter terminology being now widely accepted. In the following, we prefer to use extension rather than exhumation because exhumation may also result from erosion, eventhough erosion in the Cyclades has probably been limited during the Cenozoic (e.g. Gautier & Brun 1994a). We emphasize that extension does not necessarily mean that the whole lithosphere, or even the whole crust, is stretched horizontally. This is obvious in the case of syn-orogenic extension, where plate convergence is the leading process and horizontal shortening the dominant regime on the lithospheric scale. Syn-orogenic extension is sometimes described as corresponding to the development of an extrusion wedge (e.g. Ring & Reischmann 2002; Ring et al. 2007a).

The distinction between post and syn-orogenic extension is a difficult task, especially because the associated faults and shear zones may have the same kinematics (Jolivet & Patriat 1999; Trotet et al. 2001a). Nevertheless, Gautier & Brun (1994b) and
Gautier et al. (1999) have argued that, because extension with a direction of stretching parallel to plate convergence was active at the same time (i.e., since at least the Aquitanian) across a wide part of the Aegean, from the Rhodope to Crete, this extension was necessarily post-orogenic, based on a comparison with the case of syn-orogenic lateral extension in the Himalaya-Tibet orogen. However, this assessment may be incorrect in the case of a significant retreat of the underthrusted slab during orogeny. As discussed by Jolivet et al. (2003), if the dynamics of the orogen is basically that of a retreating subduction, then extension can be everywhere parallel to convergence, including in the area lying above the frontal thrust zone. In a sense, such an orogen is not purely collisional, therefore the description of extension as post or syn-collisional (Gautier & Brun 1994b) is unadapted in this case.

Even if only extensional structures are observed in a late-orogenic setting, it is usually difficult to demonstrate that their formation was strictly post-orogenic, because it can always be argued that coeval thrusting possibly occurred beneath the deepest exposed rocks. Conversely, syn-orogenic extension is demonstrated if a thrust zone can be shown to have been active while extension occurred, or had already started, at shallower levels. Avigad & Garfunkel (1989) and Avigad et al. (1997) tentatively argued for the latter case on Tinos and Evia islands, however their arguments have been criticized by Gautier (2000) and Bröcker & Franz (2005). Moreover, in the scenario of Avigad et al. (1997) for the Cyclades, coeval thrusting and inferred syn-orogenic extension are restricted to the Oligocene period, while post-orogenic extension started at about 25 Ma, associated with a pervasive greenschist facies overprint, as in the common view (see above). Avigad et al.
(1997) also recognized that the identification of structures associated with the period of
syn-orogenic extension is problematic.

The shape of the pressure-temperature path followed by metamorphic rocks may
help to decipher between syn-orogenic and post-orogenic extension. Following Wijbrans
et al. (1993), Jolivet and co-workers have proposed that, among the metamorphic rocks
of the Cyclades, those having followed a cold geotherm during exhumation should have
done so owing to syn-orogenic extension (Jolivet & Patriat 1999; Trotet et al. 2001a, b;
Parra et al. 2002; Jolivet et al. 2003). A critical question is how cold this geotherm should
be, given that exhumation beneath a detachment also helps to prevent heating. The best
answer probably comes from the study of Parra et al. (2002), which shows that, on Tinos,
rocks in the footwall of the NE-dipping detachment experienced an episode of isobaric
heating (a temperature increase from 400° to 550°C at about 9 kbar) between two
episodes of exhumation. Parra et al. (2002) convincingly proposed that the first and
second episodes reflect syn-orogenic and post-orogenic extension, respectively (see also
Jolivet et al. 2004). Therefore, on Tinos at least, only post-orogenic extension would be
recorded since rocks left the conditions of blueschist facies metamorphism. In other
words, all the structures developed at greenschist facies and subsequent lower grade
conditions are expected to relate to post-orogenic extension, in agreement with earlier
proposals (Gautier & Brun 1994a; Jolivet & Patriat 1999). There does not seem to be a
significant diachronism of greenschist facies metamorphism on the scale of the Cyclades
(including at high levels of the metamorphic pile on Syros, see section 3.3), therefore the
whole set of detachment zones and associated MCC described before have probably
developed during post-orogenic extension.
It is difficult to determine when this extension started. Using the data of Bröcker & Franz (1998), Parra et al. (2002) have suggested that the beginning of the second episode of exhumation and, therefore, the onset of post-orogenic extension in the Cyclades took place at 30 Ma (see also Jolivet et al. 2003, 2004). Based on the data of Wijbrans et al. (1990), Wijbrans et al. (1993) have proposed a P-T path for lower levels of the metamorphic pile on Sifnos that resembles the one of Parra et al. (2002) for Tinos. However, in this case, isobaric heating (at 6.5 kbar) would have occurred from 30 Ma to 22 Ma, so that the second episode of exhumation would start at 22 Ma. Nevertheless, the scenario of Wijbrans et al. (1993) assumes that post-thickening extension started at 30 Ma, being first confined to crustal levels beneath the presently exposed rock pile, then migrating into this pile. Therefore, both interpretations (Wijbrans et al. 1993; Parra et al. 2002) concur in the idea that post-orogenic extension was active in the Cyclades during the earliest Miocene (e.g., Gautier & Brun 1994a); they even suggest that it was already active during the late Oligocene.

In contrast, Ring and co-workers have put forward an extreme alternative scenario, in which a context of syn-orogenic extension would have been maintained in the Cyclades until ca. 21 Ma (Ring et al. 2001; Ring & Reischmann 2002; Ring & Layer 2003; Ring et al. 2007a). This would have been followed by an episode of post-orogenic extension starting later than ca. 15 Ma (Ring et al. 2007a), probably at ca. 12 Ma (Ring & Layer 2003), and resulting from thermal weakening at the time the Aegean magmatic arc would have reached the Cyclades. If this scenario is correct, then extensional structures associated with greenschist facies and higher temperature metamorphism should largely date from an episode of syn-orogenic extension, like, for instance, on Naxos (e.g. Gautier
et al. 1993; Keay et al. 2001), Tinos (e.g. Gautier & Brun 1994a; Bröcker & Franz 1998, 2000; Jolivet et al. 2004) and Andros (Gautier & Brun 1994b; Bröcker & Franz 2006). As a result, our attempt to compare the present numerical simulations and the Cycladic case would be questionable. According to Ring and co-workers, the Central Aegean region is floored by the poorly exposed parautochtonous Basal unit, coinciding with the Almyropotamos unit in central southern Evia (e.g. Dubois & Bignot 1979); this unit would have been underthrusted while extensional shearing developed at higher levels of the metamorphic pile. This interpretation follows Avigad et al. (1997) except for the timing of the episode of syn-orogenic extension (before about 25 Ma for Avigad et al., as late as 21 Ma for Ring and co-workers). We think that this scenario is unlikely, especially its timing, for the three following reasons.

- Rb-Sr and 40Ar/39Ar dating of phengites from samples of the Basal unit has yielded ages mostly between 21 and 24 Ma (Ring et al. 2001; Ring & Reischmann 2002; Ring & Layer 2003). While they coincide with the timing of greenschist facies metamorphism in the overlying unit, these ages were interpreted as reflecting high-pressure metamorphism in the Basal unit (hence constraining the age of underthrusting) because the dated phengites have a high Si content (≥ 3.3 per formula unit). However, as thoroughly discussed by Bröcker et al. (2004) and Bröcker & Franz (2005), this interpretation is questionable and the obtained ages are more likely to reflect the timing of post-high-pressure greenschist facies retrogression, as in the overlying unit. Further support to the objections of Bröcker et al. (2004) is found in the recent Rb-Sr study of Wegmann (2006) on rocks from southeasternmost Evia, at higher levels of the metamorphic pile, far above the Basal unit. In one rock repeatedly dated with a
microsampling method, phengites have a Si content ranging from 3.36 to 3.74 pfu and yield Rb-Sr ages ranging from 21 to 11 Ma. Following the line of reasoning of Ring and co-workers, this would mean that higher levels of the metamorphic pile were still experiencing high-pressure conditions at that time. This is at odds with the report from the neighbouring northwestern Cyclades (Bröcker & Franz, 1998, 2006) and from southern Evia itself where, according to Ring et al. (2007a), such rocks experienced greenschist facies conditions as early as 21 Ma. It should also be stressed that the youngest fossils found so far in the Almyropotamos unit represent the lower or middle Eocene (Dubois & Bignot 1979), not upper Eocene-Oligocene as commonly reported (e.g. Ring et al. 2007a), therefore this unit may have started to underthrust as early as during the early Eocene.

- According to the scenario of Ring and co-workers, the Central Aegean region should have been characterized by a depressed geotherm as late as around 21 Ma (i.e., as long as underthrusting and inferred high-pressure metamorphism were developing), and no significant thermal overprint is expected before about 14 Ma, when arc magmatism is considered to have reached the Cyclades. However, this does not take into account the case of the migmatite domes on Naxos and Paros Islands. U-Pb dating of zircons from the migmatitic core of Naxos indicates that partial melting mostly occurred at ca. 17.5 Ma and was already under way at 20 Ma (Keay et al. 2001), in good agreement with time constraints provided by other radiometric methods (e.g. Andriessen et al. 1979; Wijbrans & McDougall 1988). This shows that at least part of the Central Aegean region was actually characterized by a high geotherm at about 20 Ma. The Basal unit is unlikely to lie underneath the migmatite domes, because if it had been underthrust until 21 Ma,
migmatization in the hangingwall of this thrust could hardly have been maintained until ca. 17 Ma (cf. Keay et al. 2001). Hence, the migmatite domes probably cut across the contact and, as stated before, represent the deepest structural levels of the Cyclades. It is not known whether the migmatites seen on Naxos and Paros expand laterally beneath the other islands, although there are chemical data to suggest so (Gautier & Brun 1994a). Whatsoever, at least the area of Naxos and Paros was hot at 20 Ma, and we do not see how this could be reconciled with the hypothesis of regional underthrusting as late as 21 Ma.

- Post-orogenic extension is accompanied by the formation of grabens (as also illustrated by our numerical experiments) which may evolve into supra-detachment basins. Thus, the base of the supradetachment basin stratigraphy may provide a minimum age for the onset of post-orogenic extension. The oldest supradetachment sediments known in the Cyclades, on Naxos and Paros, are Aquitanian (23.0-20.4 Ma; Lourens et al. 2004) and form the basis of a nearly continuous stratigraphy reaching the upper Miocene (Angelier et al. 1978; Roesler 1978; Sanchez-Gomez et al. 2002). This documents continuous formation of accommodation space from the Aquitanian onward, suggesting no fundamental change in the tectonic setting since that time (Gautier et al. 1993; Gautier & Brun 1994a; Sanchez-Gomez et al. 2002). In addition, the Aquitanian and Burdigalian sediments are marine deposits (e.g. Angelier et al. 1978), while it may be argued that sedimentation beneath sea level is unexpected during (or immediately after) a context of extension coeval with underthrusting, as in the scenario of Ring et co-workers.

To conclude on this part, our opinion is that a context of syn-orogenic extension could hardly have existed in the Cyclades later than about 25 Ma, considering that at least
a few million years were necessary to enhance partial melting after underthrusting, whatever the exact origin of the heating event. Syn-orogenic extension finishing at ca. 37 Ma, as suggested by Parra *et al.* (2002), would fit this condition. We also note that the onset of post-orogenic extension at ca. 30 Ma in the Cyclades, as suggested by Wijbrans *et al.* (1993) and Parra *et al.* (2002), is fully compatible with the timing of events reported by Thomson & Ring (2006) and Ring *et al.* (2007b) in the nearby Menderes massif, where the allochtonous position of the ‘blueschist’ unit of the Cyclades is well established.

4. Comparison and discussion

4.1 Comparison between the numerical experiments and the Cyclades

We now compare the results of our numerical experiments with the geological record of the Cyclades. Four essential issues are compared: the final depth of the Moho, the geometry of MCCs, their kinematic pattern, and the amount of time associated with their exhumation.

A – Moho depth

In the experiments, the Moho interface remains nearly flat throughout the extensional process (Fig. 5). The final Moho depth increases with increasing initial crustal thickness and with decreasing boundary velocity (Fig. 7). Within the range of
conditions giving rise to interfering MCCs (see section 2), this depth varies between 22.5 and 29 km. In the Cyclades, various geophysical investigations indicate that the Moho is almost flat, lying at depths around 25-26 km (Makris & Vees 1977; Makris 1978; Vigner 2002; Li et al. 2003; Tirel et al. 2004b), well within the expected range of values. According to the experiments, a value of 25-26 km is compatible with an initial crustal thickness (at the onset of post-orogenic extension) of ~ 43-44 km (Fig. 7e) and a boundary velocity of ~ 2.0-2.3 cm/yr (Fig. 7f).

B – Geometry of MCCs

Before comparing the geometry (this section) and kinematic pattern (next section) of MCCs in the numerical simulations and in the Cyclades, it must be stressed that, unlike in the experimental setup, the crust of the Cyclades was neither homogeneous nor isotropic at the onset of post-orogenic extension. Most authors agree on the view that crustal thickening during the earlier orogenic period occurred through the operation of dominantly SSW-vergent thrusts (e.g. Bonneau 1982; Jolivet et al. 2003; van Hinsbergen et al. 2005a). Hence, it may be suspected that some of these thrusts were later reactivated as normal-sense detachment zones (e.g. Gautier et al. 1993; Avigad et al. 1997; Trotet et al. 2001a; Jolivet et al. 2003; Ring et al. 2007a). This may explain the predominance of top-to-NNE shearing during extension on the scale of the Cyclades. However, clear evidence that earlier thrusts have particularly localized later extensional shearing is usually missing. On Ios Island, Vandenberg & Lister (1996) suggested that the south-vergent South Cyclades shear zone partly reactivates (in extension) a north-vergent
Alpine thrust, however the arguments for such a thrust are unclear. It remains that dominantly SSW-vergent Alpine thrusting has certainly produced a broadly north-dipping stack of various lithologies, the weakest of which may have localized later extensional shearing. Thus, not only the predominance of top-to-NNE shearing during extension might be explained by earlier thrusting, so does the spatial distribution of extensional detachments, which could in part reflect the initial geometry of the thrust stack. We are aware of this problem when comparing the Cyclades with the numerical simulations, which arises from our choice of the simplest possible initial conditions in the experimental setup. Nevertheless, as the simulations compare relatively well with the natural case, our impression is that the role of pre-existing structures has been minor during post-orogenic extension in the Cyclades. We suspect that this arises from the high thermal profile of the crust at the initiation of post-orogenic extension. According to our experiments, at least the lower half of the crust was at temperatures in excess of 550°C, at which the viscosity contrast between the most common rock types is severely reduced. At these levels, the most significant viscosity drops relate to the progress of anatexis, which depends only partly on the geometry of earlier thrusting.

A number of observations imply that several MCCs coexist in the Cyclades (see section 3.2). Structural data suggest that three parallel detachment systems and associated MCCs have developed in both the northwestern Cyclades (correlated with the Evia-Mykonos, Gyaros-Syros and Kea-Sifnos island chains) and the southeastern Cyclades (correlated with the Ikaria-Samos, Paros-Naxos and Folegandros-Ios island chains). As discussed by Gautier & Brun (1994b), the MCCs of at least two of these chains apparently interfere with one another, based on the relationships between Naxos and Ios,
Paros and Sikinos, and Tinos and Syros (see section 3.3). We now focus on a comparison between the numerical simulations and the Naxos-Ios and Tinos-Syros island pairs, leaving Paros-Sikinos aside because it repeats the case of Naxos-Ios without an equivalent structural or geochronological dataset being available.

We find striking similarities between the simulations and the selected island pairs in terms of geometry (Fig. 9). Naxos constitutes a large MCC with a pronounced asymmetry, exhuming high-temperature lower crustal rocks (e.g. Gautier et al. 1993). Ios constitutes another MCC (e.g. Vandenberg & Lister 1996) developed in a direction opposite to the slope of the Naxos detachment. The Ios dome seems symmetric (at least, its asymmetry is not as pronounced as on Naxos or Paros). It is apparently narrower than the Naxos dome (although both are partly hidden beneath sea level) and exposes lower grade rocks (e.g. Van der Maar & Jansen 1983), indicating that the Ios MCC is less developed. The Ios dome is superimposed on the southern flank of the Naxos dome (Gautier & Brun 1994b). Although less clearly expressed, the Tinos-Syros island pair displays a similar geometry. Tinos is an asymmetric MCC exhuming rocks with a pervasive greenschist facies overprint (Gautier & Brun 1994a; Jolivet & Patriat 1999; Parra et al. 2002). Syros is another MCC developed in a direction opposite to the slope of the Tinos detachment. However, Syros does not show a regular dome, which may be due to the moderate size of the island and to the influence of large normal faults cutting across the metamorphic series (Ridley 1984). It exposes rocks with broadly a less intense greenschist facies overprint than on Tinos (e.g. Trotet et al. 2001a). We have discussed in section 3.3 the possible interpretations of this feature, suggesting that the upward gradient of preservation of the high-pressure assemblages across the metamorphic pile of Syros
(and Sifnos) may reflect the transition from pervasive deformation, below, to more localized deformation, above, within a coherent layer of greenschist facies metamorphism. If so, then at least part of Syros exposes rocks of slightly shallower origin than on Tinos. This hypothesis is supported by a comparison of the P-T paths of the deepest rocks on Syros (Trotet et al. 2001b) and Tinos (Parra et al. 2002), showing that, along the greenschist facies segment of the exhumation path, temperatures were $\geq 50^\circ$ higher in the case of Tinos. In our experiments, the isotherms are carried upward during the earlier stages of MCC development, therefore we expect a rock of deeper origin to experience higher temperatures during exhumation, as also clearly illustrated by the numerical experiments of Gessner et al. (2007). Thus, the Tinos MCC has apparently accommodated more exhumation than the Syros MCC has. Note that the same process of upward heat transport during MCC development might also account for the different P-T paths obtained by Trotet et al. (2001b) across the metamorphic pile of Syros and Sifnos (see e.g. Gessner et al. 2007, their figure 6). As discussed by Gautier & Brun (1994b), the Syros MCC is probably superimposed on the southwestern flank of the Tinos MCC.

Summing up, the geometry of MCCs along the Naxos-Ios transect and, to a less extent, the Tinos-Syros transect, compares well with the numerical simulations (Fig. 9). The comparison is more convincing with type 2 experiment, in which the second dome develops in the immediate vicinity of the first dome, so that the two MCCs are partly superimposed (Figs 5d, e, f and 6). In this case, no wedge of upper crustal rock is preserved between the MCCs, a feature that Gautier & Brun (1994b) have claimed to characterize the Cyclades. If, alternatively, higher levels of the metamorphic pile on Syros (and Sifnos) represent rocks that were exhumed to upper crustal conditions before
the onset of post-orogenic extension (e.g. Trotet et al. 2001a; see discussion in section 3.3), then the structure is almost the same, with only the Syros MCC being less developed (i.e., leaving a cap of upper crustal rocks near the apex of the dome).

In addition, special attention should be paid to the width of the two largest MCCs of the Cyclades, on Naxos and Paros. According to the above comparison, these two domes represent MCCs of the first generation. In the experiments, depending on the initial conditions, the width of the first dome is quite variable (Fig. 7a, b). The width of Naxos and Paros domes, measured in the same way as in the experiments (from the front of the detachment, plunging northward, to the rearmost part of the dome, before reaching a wedge of brittle upper crust) is at least 35 km and most probably less than 60 km. This range is compatible with an initial crustal thickness between ~ 41 and 44 km, and seems to exclude greater values (Fig. 7a). It also seems to exclude a boundary velocity lower than ~ 2 cm/yr (Fig. 7b). Thus, the width of the MCCs of the first generation suggests broadly the same range of initial conditions as the final Moho depth does (see section 4.1.A).

C – Kinematic pattern

Similarities are also found between the simulations and the Naxos-Ios and Tinos-Syros island pairs in terms of kinematic development of the MCCs. However, before attempting a comparison, we should keep in mind the origin of shear zones in the numerical experiments, and address the question whether the same process could have operated in the Cyclades. In the experiments, faulting occurs in the upper crust due to the
imposed horizontal stretching; a major fault (i.e. a detachment) ultimately develops at this level if stretching is strong enough (see section 2.2.B; see also Tirel et al. 2004a). In the lower crust, ductile shear zones develop as a by-product of the process of inward flow. In the Cyclades, Gautier and Brun (1994a, b) have interpreted the inhomogeneous shear zone pattern of some of the islands (especially Tinos, Andros, Ios) as reflecting such a process of inward flow (see section 3.2). On Tinos and Andros, there is good evidence that this shear zone pattern developed during greenschist facies metamorphism and subsequent cooling to conditions corresponding to the transition from pervasive ductile to localized semi-brittle behaviour (Gautier & Brun 1994a; Gautier 1995; Jolivet & Patriat 1999; Jolivet et al. 2004; Mehl et al. 2005). In our experiments, shearing due to inward flow occurs significantly below the ductile-brittle transition (i.e., at temperatures at least ~ 150°C higher than the temperature of ~ 300°C obtained for the transition), nevertheless it is conceivable that shearing may propagate up to this interface if the ductile-brittle transition is to become a low-strength horizon after a certain amount of crustal extension is achieved (see section 2.2.B). The structural record on Tinos and Andros shows that this situation may hold in the Cyclades. In addition, as micaschists and marbles dominate among the various rock types found in the islands, shearing due to inward flow may propagate at even shallower depths (that is, along an isotherm of less than 300°C) if the proper rheological laws were used, instead of that of quartz-diorite. Nevertheless, orthogneisses apparently dominate at lower levels of the Cyclades rock pile, as seen on Naxos, Paros and Ios (e.g. van der Maar & Jansen 1983; Gautier et al. 1993), therefore the choice of quartz diorite as the representative rock type for the Central Aegean crust as a whole seems justified (cf. e.g. Jolivet et al. 2003, 2004).
As mentioned before, Naxos and Paros Islands are asymmetric domes that consistently display top-to-north shear criteria. This kinematics is observed from the envelope of the domes (Gautier et al. 1993) down to the migmatitic core of Naxos (Buick 1991) and the poorly defined migmatitic domain of Paros (Gautier et al. 1993). Hence, in the Cyclades, the largest MCCs, associated with the most pronounced exhumation, do not display evidence of inward flow emanating from the rear part of the dome (that is, inward flow that would produce shearing antithetic to the main detachment zone) whereas, according to the interpretation of Gautier & Brun (1994a, b), less mature MCCs do so. This may be viewed as a paradox, however, the present experiments show that it is not.

As seen on Figure 5, SZ1, which relates to this antithetic inward flow toward the main dome, is pronounced but confined to great depths and, unlike SZ2, never reaches the surface. In contrast, in the case of the secondary dome, the two limbs coincide with antithetic shear zones that extend upward the two flat-lying shear zones (SZ11 and SZ12) developed in response to renewed inward flow. As a consequence, the secondary dome tends to be symmetric, and it can be expected that no dominant sense of shear will be found around its apex. These features compare relatively well with the case of Ios and Syros Islands (see section 3.2). As mentioned in section 2.2.B, SZ12 reactivates SZ1 in opposite sense but with less strain accumulated, therefore it can be expected that relics of the first kinematics will be found along SZ12. While assuming that the Ios MCC was controlled by a north-dipping detachment, Gautier & Brun (1994b) suggested that this feature may explain the predominance of top-to-south shearing across the Ios dome (that is, top-to-south shearing would in part reflect early inward flow in the rear flank of the Naxos MCC). However, because the relations between top-to-south and top-to-north
shearing are unclear on Ios (see section 3.2), we leave it open whether this hypothesis makes sense. The same applies to Syros, which is possibly dominated by coaxial deformation, but where there is no indication of an early top-to-SW shearing event that would be overprinted by top-to-NE shearing (e.g. Trotet et al. 2001a; see section 3.2).

Summarizing, both the geometry (cf. previous section) and the kinematic pattern of MCCs compare well between the experiments and the Naxos-Ios and Tinos-Syros island pairs (Fig. 9). In both cases, the comparison holds for two among three chains of islands, and, thus, seems to ignore the Ikaria-Samos and Kea-Sifnos chains. It should be reminded that additional domes do develop in the course of the experiments (see section 2.2.A), located at far distance from the domes under discussion, so that the former do not interfere with the latter (i.e., they are not superimposed nor they rework earlier shear zones). We tentatively suggest that the Ikaria-Samos and Kea-Sifnos chains, which lie relatively far from the other chains, coincide with these non-interfering MCCs.

D – Timing of exhumation

The simulations and the Cyclades are now compared in terms of chronology using two approaches. Firstly, the comparison may concern the total time elapsed from the onset of post-orogenic extension until the time the development of all MCCs has reached an end. The latter bound is not equivalent to the end of the extensional process because lithospheric stretching may go on due to unchanged boundary conditions. However, due to crustal thinning, the style of extension is expected to change at once, and the development of MCCs to be arrested (e.g. Buck 1991), which is indeed what we observe.
in the experiments (see also Tirel et al. in press). The amount of time defined in this way
is here termed the duration of MCC-type extension. In the experiments, within the range
of conditions giving rise to interfering MCCs, the duration of MCC-type extension varies
between 16 and 32 Myr (Fig. 7). In the Cyclades, it can be estimated as follows. For the
onset of post-orogenic extension, following the discussion in section 3.4, we take 30 Ma
(e.g. Parra et al. 2002; Jolivet et al. 2004) as the earliest possible date, which is consistent
with the record in the nearby Menderes massif (Thomson & Ring 2006; Ring et al.
2007b). The latest possible date is ca. 23 Ma (Gautier & Brun 1994a; Bröcker & Franz
1998, 2005, 2006). As for the end of MCC-type extension, a change in structural style
seems indeed recorded in the Cyclades during the late Miocene, when regional-scale
high-angle faulting, bounding Messinian-Quaternary basins, succeeded to fast cooling of
the metamorphic domes, vanishing in the time range ~ 11-6 Ma (Gautier & Brun 1994a;
2006; Brichau et al. 2006, 2007). This is in line with the Messinian age for the oldest
sediments nonconformably covering the metamorphic series on Milos (van Hinsbergen et
al. 2004). We thus set the end of MCC-type extension in between 11 and 6 Ma. It is
worth noting that the youngest evidence of fast cooling in the footwall of a low-dipping
detachment is provided by islands largely made up of a young I-type intrusion, like
Ikaria, Serifos, Mykonos and the western part of Naxos (Altherr et al. 1982; Hejl et al.
2002, 2003; Kumerics et al. 2005; Iglseder et al. 2006; Brichau et al. 2006). It is
therefore possible that arc magmatism had locally the capacity of delaying by a few
million years the end of MCC-type extension, although Brichau et al. (2006) argue that,
on Naxos, the intrusion of the ca. 12 Ma-old granodiorite had a negligible effect on the
kinetics of the detachment system. Combining the above dates, the duration of MCC-type
extension in the Cyclades is between 12 and 24 Myr, in good agreement with the
experimental range. It is compatible with any initial crustal thickness in the range of 40-
50 km (Fig. 7c) while it seems to exclude a boundary velocity lower than \(\sim 1.7 \) cm/yr
(Fig. 7d).

Secondly, the comparison may concern the relative timing of MCC development
along a section parallel to stretching, as in the case of the Naxos-Ios and Tinos-Syros
island pairs. In the experiments (and in the scenario favoured by Gautier & Brun 1994b),
the second dome starts to develop once the first dome has achieved much of its
exhumation (Fig. 5). This suggests that the period of fastest cooling in the first dome
should predate that in the second dome. For instance, in Figure 5a, the first dome
experiences fast cooling between the time slices 7.0 Myr and 11.4 Myr, while the second
dome does so later, until about 17.4 Myr. At first sight, this relation seems to imply that
cooling ages should be older in the first dome. However, this is not necessarily correct,
because the amount of exhumation is also different between the two domes. In Figure 5a,
at 7.0 Myr, the green layer is approximately bounded by the isotherms 350 and 550°C,
therefore it represents rocks in greenschist facies conditions. Rb-Sr white mica ages from
these rocks are expected to date this stage at 7.0 Myr. Considering the range of estimates
for the closure temperature of argon in white mica (e.g. Wijbrans et al. 1993; Kirschner et
al. 1996), \(^{40}\text{Ar}/^{39}\text{Ar}\) white mica ages from this layer should also broadly date the stage at
7 Ma, or eventually the stage at 11.4 Ma, when at least the upper half of the green layer
lies above the 350°C isotherm. In the first dome, the greenschist facies layer, together
with deeper rocks, are fastly exhumed within the same time range, from 7.0 to 11.4 Myr.
The same relations are observed in type 2 experiment. At the end of MCC-type extension, especially in type 2 experiment (Fig. 5d), the second dome exposes only rocks of the greenschist facies layer, therefore white mica ages from this dome are expected to be not significantly different from white mica ages and higher temperature chronometers (e.g., U-Pb on zircon, 40Ar/39Ar on hornblende) from the first dome (e.g., in Figure 5, within the time range from 7.0 to 11.4 Myr, i.e. within \leq 4.4 Myr). Moreover, Figure 5b shows that, at the same time the second dome rises, shearing is still active along the frontal detachment of the first dome (cf. the stage 17.4 Myr). Hence, cooling ages from this frontal segment of the first dome are expected to be as young as the cooling ages of the second dome. Summing up, these relations suggest that there is not necessarily a significant difference to be expected in the geochronological record of the two domes. The only marked difference should concern the period of fastest cooling, however it is possible that the second dome does not raise enough to allow a proper documentation of this fast cooling period on geochronological grounds.

On Naxos, a period of fast cooling is recorded in the migmatitic core and amphibolite facies inner envelope of the dome in between ca. 16 and 8 Ma (Wijbrans & McDougall 1988; Gautier et al. 1993), following an anatectic event that lasted from at least 20 Ma until ca. 17 Ma (Keay et al. 2001). The period of fastest exhumation probably occurred between the end of the anatectic event and the emplacement of the Western Naxos Granodiorite (Gautier et al. 1993), that is, beween about 17 and 12 Ma according to the data of Keay et al. (2001). S-type granites emplaced in the inner envelope of the dome at 15.5-12 Ma (Keay et al. 2001), possibly as a result of decompression melting at deeper levels of the rock pile during fast exhumation. Ongoing core complex
development after 12 Ma is indicated by the syn-kinematic character of the Western Naxos Granodiorite with respect to the north-dipping detachment zone, and by the subsequent development of massive cataclasites along the contact between the two (Urai et al. 1990; Buick 1991; Gautier et al. 1993). A pseudotachylite vein from this contact is dated at 10 Ma (Andriessen et al. 1979). According to Brichau et al. (2006), brittle shearing along the detachment occurred as late as 8.2±1.2 Ma, based on low-temperature thermochronology. As mentioned above, the intrusion of a large amount of arc-related magma (i.e. the Western Naxos Granodiorite) may have sustained the development of the Naxos MCC for a longer time, although this is not the hypothesis favoured by Brichau et al. (2006). As a fact, the two youngest ages obtained by Brichau et al. (2006) come from the northern part of the metamorphic dome, seemingly far from the granodiorite. This area also yields the youngest K-Ar and $^{40}\text{Ar}/^{39}\text{Ar}$ hornblende and biotite ages from the dome (Andriessen et al. 1979; Wijbrans & McDougall 1988), a feature that it is tempting to attribute to progressive northward migration of unroofing in the footwall of the detachment (Gautier et al. 1993; Brichau et al. 2006). However, this could also result from the emplacement of the Western Naxos Granodiorite or an equivalent young intrusion beneath this area, as proposed by Andriessen et al. (1979), Wijbrans & McDougall (1988) and Keay et al. (2001). Such an intrusion actually exists, as indicated by the local occurrence in northernmost Naxos of a hornblende-bearing I-type granite dated at ca. 12 Ma (Keay et al. 2001). Hence, it is possible that ongoing development of the Naxos MCC after 12 Ma has occurred owing to the emplacement of arc-related magmas. In the rear part of the dome, rocks that did not experience temperatures higher
than 550°C were at about 500°C at ca. 22.5-20 Ma and cooled to about 300°C at ca. 14-11 Ma (Andriessen et al. 1979; Wijbrans & McDougall 1988; Andriessen 1991).

The cooling history of the Ios MCC is not well constrained. A 40Ar/39Ar white mica pseudo-plateau age at about 20.5 Ma is considered to date shearing along the South Cyclades shear zone (Baldwin & Lister 1998). A Rb-Sr white mica age from a deformed aplitic vein at 13.2±0.4 Ma (Henjes-Kunst & Kreuzer 1982) together with 40Ar/39Ar potassium feldspar minimum apparent ages at about 14 Ma from mylonitic augengneiss (Baldwin & Lister 1998) date another (distinct?) shearing event (Vandenberg & Lister 1996; Baldwin & Lister 1998). This second event is suspected to reflect the influence of the mid-Miocene magmatism of the Cyclades, yet, so far, there is no clear evidence for any Miocene intrusion on Ios. Hence, the ages at 13-14 Ma may relate to deformation without a specific thermal event. Apatite fission track ages indicate cooling below about 100°C between 13.3±1.1 and 8.3±1.1 Ma (Hejl et al. 2003). Comparing the geochronological record on Naxos and Ios, we find no significant diachronism. As explained above, because the Ios MCC is associated with much less exhumation, this observation is not incompatible with the Ios dome having formed later.

On Tinos, 40Ar/39Ar and Rb-Sr ages on white mica indicate that greenschist facies top-to-NE extensional shearing occurred at about 24-21 Ma (Bröcker & Franz 1998, 2005). The detachment zone is crosscut by the Tinos composite intrusion and associated thermal aureole (Altherr et al. 1982; Avigad & Garfunkel 1989; Bröcker & Franz 2000). Rb-Sr and K-Ar ages from the main I-type granite (Altherr et al. 1982; Avigad et al. 1998) and its thermal aureole (Bröcker & Franz 2000) suggest an early cooling at 15.5-14 Ma. Whole-rock Rb-Sr dating indicates that marginal S-type intrusions emplaced at the
same time (Altherr et al. 1982; Bröcker & Franz 1998). Altherr et al. (1982) originally argued that the main granite probably emplaced before 17 Ma, however available radiometric data are compatible with the view that it did so at around 15 Ma (see discussion in Bröcker & Franz 2000). Recent U-Pb dating of zircons from the main intrusion has yielded an age of 14.6 ± 0.2 Ma (Brichau et al. 2007), supporting the latter view. On the one hand, this indicates that much of the displacement along the detachment zone occurred before 15 Ma. On the other hand, the margins of the plutonic complex show evidence of top-to-NE shearing during and subsequent to emplacement (Gautier & Brun 1994a; Bröcker & Franz 1998; Jolivet & Patriat 1999; Brichau et al. 2007). A series of subvertical NW-SE-trending dykes dated at 12-11 Ma (Avigad et al. 1998) documents ongoing NE-SW stretching once the rocks reached the brittle upper crust (see also Mehl et al. 2005). Final cooling at around 12-9 Ma is documented by apatite fission track ages from the main intrusion (Altherr et al. 1982; Hejl et al. 2002; Brichau et al. 2007). It is difficult to establish whether, and when, a period of fastest exhumation occurred on Tinos, especially because it is not clear where the ages at 24-21 Ma should be plotted along the greenschist facies segment of the pressure-temperature path. If, however, a closure temperature of about 500°C is accepted for the Rb-Sr system in white mica (Bröcker & Franz 1998, 2005), then, using the path obtained by Parra et al. (2002), this age range should coincide with pressures around 6 kbar. Pressures associated with the thermal aureole of the ca. 15 Ma-old Tinos intrusion are around 2-3 kbars (e.g. Bröcker & Franz 2000). Taken together, these values yield a mean exhumation rate around 1.5-2 mm/yr during the period from ca. 22 to 15 Ma. The apatite fission track ages indicate that later exhumation was slower. If the earlier episode of heating at about 9 kbar ended at
around 30 Ma, as suggested by Parra et al. (2002) (see section 3.4), then a mean exhumation rate around 1.4 mm/yr is suggested for the period from ca. 30 to 22 Ma. These estimates are crude, nevertheless they suggest that exhumation proceeded either at constant rate from ca. 30 Ma to 15 Ma, or was a bit faster during the 22-15 Ma interval.

The cooling history of Syros is very poorly known. At least part of the displacement along the detachment seen in southeastern Syros occurred later than 30 Ma (see section 3.3). Zircon fission track ages are around 20 Ma in the hangingwall and around 11 Ma in the footwall, suggesting that the detachment was active at ca. 11 Ma (Ring et al. 2003). All the footwall samples come from northern Syros, so that it is not clear whether the age difference reflects displacement along the detachment itself or/and along one of the low-angle normal faults that dissect the footwall (Ridley 1984). Summing up, a sound comparison between Tinos and Syros is out of reach so far, nevertheless available radiometric data leave it possible that the Tinos MCC formed earlier.

The above review also indicates that the two island pairs (Naxos-Ios and Tinos-Syros) may have formed contemporaneously. The Naxos MCC experienced its fastest exhumation between ca. 17 and 12 Ma, while the Tinos MCC may have done so between ca. 22 and 15 Ma. Thus, the two MCCs could be broadly coeval. In contrast, Jolivet et al. (2004) claimed that the Naxos MCC has formed ~ 5 Ma later than the Tinos MCC has. They further proposed that, in the Cyclades, ‘a-type’ MCCs (domes with an axis parallel to extension, like on Naxos) are associated with greater exhumation and formed later than ‘b-type’ MCCs (domes with an axis perpendicular to extension, like on Tinos). This interpretation largely arises from the assumption that the main intrusion on Tinos
emplaced as early as 20-19 Ma, as initially proposed by Altherr et al. (1982). As stated above, however, available radiometric data make it possible that the whole composite intrusion of Tinos emplaced at around 15 Ma. We also notice that the Ios MCC is clearly a ‘a-type’ dome (e.g. Gautier & Brun 1994a; Vandenberg & Lister 1996), yet, at variance with the hypothesis of Jolivet et al. (2004), it did not exhume higher grade rocks than the Tinos MCC did, and recorded extensional shearing as early as ca. 20.5 Ma (Baldwin & Lister 1998), that is, at the same time as on Tinos.

4.2 – Implications for the conditions of extension in the Cyclades

Insofar as the numerical experiments presented in this study adequately simulate the process of lithospheric extension, their comparison with the case of the Cyclades suggests a relatively narrow range of conditions for the development of post-orogenic extension in the Central Aegean region during the late Cenozoic. We now review and discuss these conditions.

A – Conditions at the onset of post-orogenic extension

A first inference concerns the mean thickness of the crust at the onset of post-orogenic extension. The present crustal thickness of 25-26 km in the Cyclades suggests an initial thickness of ~ 43-44 km (see section 4.1.A and Fig. 7e), in line with the range of ~ 41-44 km suggested by the width of the Naxos and Paros first-generation MCCs (see section 4.1.B and Fig. 7a). These values are consistent with (rough) estimates in the
literature (e.g. McKenzie 1978; Le Pichon & Angelier 1979; Gautier et al. 1999) and compare well with the current crustal thickness of ≤ 46 km in the western Hellenides of mainland Greece (Makris 1975), where extension has played only a minor role.

A second inference concerns the thermal state of the lithosphere at the onset of extension. The numerical experiments suggest an initial thickness of the thermal lithosphere of about 60 km (corresponding to an initial Moho temperature of 1070°C at 44 km). The thermal state of the Aegean lithosphere immediately before post-orogenic extension cannot be well-constrained. Nevertheless, the presence of HT metamorphism in the Cyclades (Keay et al. 2001) suggests that the MCCs have developed in a hot lithosphere and our numerical results clearly lead to the same inference (Fig. 3). This argument is also sustained by several other numerical studies (Block & Royden 1990; Buck 1991; Tirel et al. 2004a, in press; Rosenbaum et al. 2005; Wijns et al. 2005; Gessner et al. 2007). Measurements of the present heat flow in the Aegean (Jongsma 1974; Erickson et al. 1977; Makris & Stobbe 1984) also corroborate the presence of a hot lithosphere. Seismological data indicate a lithosphere-asthenosphere boundary at a depth between 40 and 50 km (Endrun et al. in review), consistent with a very high thermal profile of the lithosphere at present.

Recently, several studies have shown evidence for a high temperature regime in the shallow mantle and a thin lithosphere (1200°C at a depth of ~ 60km) over widths of 250 to > 900 km in several subduction zone back-arc domains unaffected by extensional processes (Currie et al. 2004; Hyndman et al. 2005; Currie & Hyndman 2006). The authors suggest that heat is rapidly carried upward by vigorous thermal convection in the upper mantle below the overriding plate. This small-scale convection could be promoted
by the low viscosities associated with the addition of water, resulting in a reduction of the
The Cyclades area may have been affected by such processes prior to the onset of post-
orogenic extension, provided it was already lying in the back-arc domain of the South
Hellenic subduction zone at that time, which is a matter of debate (e.g. Ring & Layer

Alternatively, the pioneering suggestion of Bird (1978) concerning continental
mantle delamination as a cause of strong heating of the crust appears attractive. In the
Aegean, this process was first suggested by Zeilinga de Boer (1989) and has been
explicitely invoked in a number of recent studies (Thomson et al. 1999; Jolivet et al.
2003; Faccenna et al. 2003; Ring & Layer 2003). Support to this hypothesis is found in a
recent review of the late Cenozoic magmatism of the Aegean by Pe-Piper & Piper (2006)
as discussed below.

B – Boundary velocity during MCC-type extension in the Cyclades

In the experiments, the range of boundary velocities which succesfully led to a
sequential development of interfering MCCs lies between 1 and 2.7 cm/yr. In addition,
the present crustal thickness of 25-26 km in the Cyclades suggests a velocity of ~ 2.0-2.3
cm/yr (see section 4.1.A and Fig. 7f), while the width of the Naxos and Paros first-
generation MCCs (see section 4.1.B) and the duration of MCC-type extension in the
Cyclades (see section 4.1.D) seem to exclude values lower than ~ 2 cm/yr (Fig. 7b) and ~
1.7 cm/yr (Fig. 7d), respectively. Hence, the experimental results predict a velocity at the
boundary of the stretching domain around 2.0-2.3 cm/yr, while lower values seem excluded.

In the case of the Cyclades, this velocity should correspond to the rate at which the South Hellenic subduction retreated during MCC-type extension. In addition, as MCC-type extension in the Cyclades lasted between about 12 and 24 Myr (from 30-23 to 11-6 Ma, see section 4.1.D), the associated amount of retreat is predicted to lie between about 240 km (for 12 Myr at 2 cm/yr) and 550 km (for 24 Myr at 2.3 cm/yr).

These values can be compared with various estimates in the literature. For instance, Faccenna et al. (2003) have considered 250 km of retreat during the period from 30 to 5 Ma, hence at a velocity of only 1 cm/yr. In contrast, a retreat velocity as high as 3 cm/yr has been proposed by Jolivet et al. (1998) on the basis of the southward migration of arc magmatism since ca. 32 Ma (Fytikas et al. 1984), assuming the underlying slab kept a constant dip. However, the graph from which this value is deduced (Jolivet et al. 1998, their figure 21b) actually yields a value of about 2.2 cm/yr and considers 700 km of migration of arc magmatism, which exceeds by at least 100 km the actual value. Instead, considering about 550 km of migration of magmatism since about 32 Ma (see van Hinsbergen 2004 for a recent compilation) would yield a retreat velocity of 1.7 cm/yr, in fair agreement with our numerical analysis. However, among the 550 km of migration, as much as 90 km may be considered as balanced not by extensional strain but by the lateral extrusion of Anatolia during the last few million years (e.g. Gautier et al. 1999), which could lower the boundary velocity of the extensional system to 1.4 cm/yr. It is also worth noting that the migration of magmatism is not an ideal mean for quantifying retreat, firstly because the assumption of a constant slab dip may not be valid, and secondly
because not every magmatic rock may reflect arc magmatism. Pe-Piper & Piper (2006) recently argued that most Cenozoic magmatic rocks of the Aegean bear petrogeochemical characteristics that are not typical of arc processes and suggest instead that they reflect either slab break-off or delamination of the lithospheric mantle. At first sight, this seems to exclude the migration of magmatism as an appropriate tool to document subduction retreat. However, tomography images of the Aegean mantle are clearly more compatible with progressive delamination of a continuous slab (*sensu* Bird 1978) rather than break-off of several slabs (e.g. Faccenna *et al.* 2003; van Hinsbergen *et al.* 2005a). The dynamics of mantle delamination is broadly equivalent to that of a retreating subduction, therefore the migration of delamination-related magmatism may actually be appropriate to quantify retreat (e.g. Zeilinga de Boer 1989).

Another estimate of the amount of retreat may arise from a comparison between the initial and present shape of the Aegean frontal arc. For instance, Gautier *et al.* (1999) suggested a smoothly curved arc at the onset of Aegean extension, which led them to propose about 440 km of retreat, of which 90 km would be balanced by the lateral extrusion of Anatolia, leaving 350 km to be balanced by extensional strain. The end-member case leading to maximum retreat is probably that of an initially rectilinear arc. Using the same arc extremities as in Gautier *et al.* (1999), this case would yield about 600 km of retreat, in reasonable agreement with the value suggested by the migration of magmatism. This would yield about 510 km balanced by extensional strain. If we assume that this occurred essentially during MCC-type extension in the Cyclades, then the boundary velocity of the extensional system could have been as high as 2.1 cm/yr if extension lasted 24 Myr (starting at ca. 30 Ma), in good agreement with our numerical
analysis, or as high as 4.2 cm/yr if extension lasted 12 Myr (starting at ca. 23 Ma). The latter value is clearly too high and suggests either that MCC-type extension in the Cyclades started significantly before 23 Ma, which we think is likely, or that the total amount of retreat has been significantly less than in the above end-member case, or that a significant part of the retreat occurred before or/and after MCC-type extension in the Cyclades.

5. Conclusions

Our numerical analysis suggests that, for certain conditions, MCCs may interfere and develop in sequence during continental extension. Like commonly claimed in the literature, we find that ‘inward’ flow of an extremely weak lower crust is required for MCCs to develop, while a sub-Moho mantle of very low strength appears to be another necessary condition for maintaining the Moho flat. As a result of lower crustal inward flow, two conjugate flat-lying shear zones form during the early development of the first MCC, one of which later evolves as a typical detachment. In the experiments with interfering MCCs, the second MCC starts to develop right above one of the previous shear zones. This shear zone is dragged upward during dome amplification and, due to renewed inward flow, is reactivated with the same kinematics along one dome limb and with the opposite kinematics along the other dome limb.

The Cyclades archipelago is characterized by three closely spaced chains of MCCs developed largely during Miocene extension. We found that the geometry and kinematic pattern of adjacent MCCs along the Naxos-Ios and the Tinos-Syros transects
compare well with the numerical experiments. Available geochronological data for these islands are not detailed enough to document a sequential development of MCCs, nevertheless they remain compatible with this hypothesis. We also compared features of the numerical experiments, such as the final Moho depth, the duration of MCC-type extension, and the width of the domes at the end of the exhumation process, to equivalent features in the Cyclades in order to tentatively constrain the initial and boundary conditions suitable to the Aegean case.

This comparison leads us to infer a crustal thickness between 40 and 44 km and a thermal lithospheric thickness of only ~ 60 km in the Cyclades at the onset of post-orogenic extension. This suggests that the Cyclades area has experienced a strong heating event before post-orogenic extension started. Either a back-arc subduction setting or a process of mantle delamination may account for this event.

The experiments also suggest a boundary velocity of 2.0-2.3 cm/yr, which should basically reflect the rate at which the South Hellenic subduction retreated. Considering ~ 500 km as an upper bound for the amount of retreat balanced by Aegean extension and assuming that this retreat mostly occurred during MCC-type extension in the Cyclades, the boundary velocity could have been as high as 2.1 cm/yr if MCC-type extension lasted 24 Myr, starting at ca. 30 Ma and finishing at ca. 6 Ma, in good agreement with the numerical analysis.

Acknowledgments

The post-doctoral grant of C.T. and computational resources were funded by ISES (Netherlands Research Centre for Integrated Solid Earth Science). C.T. thanks E. Burov,
Y. Podladchikov and A. Poliakov who have co-developed the kernel of PARAVOZ.

D.J.J.v.H. is funded through an NWO-VENI grant. We thank R. Govers, J.-P. Brun and E. Burov for discussions at various stages of the project. We gratefully acknowledge the Editor M. Edwards and the two reviewers S. Buiter and M. Bröcker for their thoughtful reviews that improved our manuscript.
References

Figure and Table captions:

Fig. 1: Simplified sketch showing the main features of a metamorphic core complex, modified after Brun & Van Den Driessche (1994).

Fig. 2: Model setup used for the numerical experiments.

Fig. 3: Main results of the first set of numerical experiments, all performed with a boundary velocity of 2.0 cm/yr. (a) Initial geotherm and lithosphere strength profile for a selection of experiments with an initial crustal thickness of 30, 44 and 60 km. (b) Distribution of the various modes of extension obtained in a series of 28 experiments (large dots) in a graph combining the initial crustal thickness with the initial depth of the thermal lithosphere (depth of the 1330°C isotherm). (c) Snapshots of four experiments illustrating the different modes of extension.

Fig. 4: Results obtained for an experiment with an initial crustal thickness of 54 km, an initial depth of the 1330°C isotherm at 100 km, and a boundary velocity of 2.0 cm/yr (cf. the open dot in Figure 3b). This experiment illustrates the general MCCs mode of extension, in which several MCCs form but remain far-distant, so that they do not interfere. The successive timeslices are dated with respect to the onset of extension. The triangles above the surface are markers helping to locate structures from one panel to the other.
Results obtained for two experiments with an initial crustal thickness of 44 km, an initial depth of the 1330°C isotherm at 60 km, and a boundary velocity of 2.0 cm/yr (type 1, cf. the yellow dot in Figure 3b) or 2.3 cm/yr (type 2). These experiments illustrate the interfering MCCs mode of extension. The successive timeslices are dated with respect to the onset of extension. The triangles above the surface are markers helping to locate structures from one panel to the other. A topographic profile with a vertical exaggeration of 10 is represented in (a) above the timeslices 7.0 and 15.3 Myr.

Fig. 6: Sketch based on the results shown in Figure 5, depicting the process of sequential development of interfering MCCs.

Fig. 7: Series of graphs summarizing the effects of modifying the initial crustal thickness (left) or the boundary velocity (right) on the width of the domes (top graphs), the time needed to exhume the first dome (black dot) and, combining the domes, the duration of MCC-type extension (open symbol) (middle graphs), and the final depth of the Moho (bottom graphs). Grey bands represent the range of values in the Cyclades, as deduced from available geological and geophysical data (see the text). More precisely, the grey band in (a) and (b) represents the width range for Naxos and Paros first-generation MCCs, to be compared with the numerical results obtained for the first dome only; the grey band in (c) and (d) represents the duration of MCC-type extension in the Cyclades. The time laps for exhuming the first dome and the duration of MCC-type extension are given with respect to the onset of post-orogenic extension. Somehow arbitrarily, the time at which the first dome finishes its exhumation is taken as the time at which the second
dome starts to form. Figure 5a-b shows that their developments can slightly overlap in
time (i.e. shearing is still active along the frontal detachment of the first dome while the
second dome rises) but also that far much of the exhumation of the first dome has
occurred before. The time difference between the black dot and the open symbol
represents the time laps for exhuming the second dome. It shows little variation, between
5 and 8 Ma.

Fig. 8: Simplified geological map of the Cyclades archipelago. Arrows indicate the
kinematics of extensional shearing during greenschist facies and locally higher
temperature metamorphism, subsequent cooling to the conditions of brittle deformation,
and within syn-kinematic intrusions. Data after Buick (1991), Gautier et al. (1993),
White (1998), Jolivet & Patriat (1999), Trotet et al. (2001a), Kumerics et al. (2005),
Iglseder et al. (2006) and Grasemann et al. (2007).

Fig. 9: Comparison between a crustal-scale cross-section showing interfering MCCs, as
deducted from the numerical analysis, and relevant data from two transects in the
Cyclades showing closely spaced MCCs, as discussed in the text. The comparison reveals
a good agreement.

Table 1: Variables and parameters used in the experiments.
Hangingwall — Detachment — Footwall
Brittle crust — Ductile crust

lower crustal 'inward' flow
30 km

Figure 1—Tirel-et-al
Figure 2 - Tirel et al
Figure 3-Tirel et al

a.

- **MCCs** (red point)
- **interfering MCCs** (yellow point)

- **transitional mode** (green point)
- **oceanization** (blue point)

b.

- **Initial depth of the 1330°C isotherm (km)**
- **Moho**

c.

- **Initial crustal thickness**
 - 60 km
 - 44 km
 - 30 km

- **Temperature (°C)**
- **Strength (MPa)**
- **Depth (km)**

- **Strain rate (s⁻¹)**

- **Total shear strain**

- **Onset of oceanization at 32 Myr**

- **Sea-floor spreading**

- **v = 2 cm/yr**
Figure 4-Tirel-et-al
Type 1 experiment

Structure

Strain rate (s\(^{-1}\))

Total shear strain

Type 2 experiment

Structure

Strain rate (s\(^{-1}\))

Total shear strain

Figure 5-Tirel-et-al
Figure 6 - Tirel et al

Structure along SZ12, showing the superposition of two shearing events with opposite kinematics.
Figure 7 - Tirel et al.

- **Type 1** (Fig. 5a-c)
- **Type 2** (Fig. 5d-f)

- **Width of the domes (km):**
 - a. initial crustal thickness (km)
 - b. boundary velocity (cm/yr)

- **Duration of MCC-type extension (Myr):**
 - c. initial crustal thickness (km)
 - d. boundary velocity (cm/yr)

- **Final Moho depth (km):**
 - e. initial crustal thickness (km)
 - f. boundary velocity (cm/yr)
Figure 8-Tirel et al
<table>
<thead>
<tr>
<th>Shape of the MCC</th>
<th>IOS</th>
<th>NAXOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric dome</td>
<td>no dominant sense (?)</td>
<td>Asymmetric dome</td>
</tr>
<tr>
<td>Asymmetric dome</td>
<td>Green schist</td>
<td>Top-to-north</td>
</tr>
<tr>
<td>Post-HP highest metamorphic grade</td>
<td>~20-13 Ma</td>
<td>>20-10 Ma</td>
</tr>
<tr>
<td>Main period of exhumation</td>
<td>?</td>
<td>17-12 Ma</td>
</tr>
</tbody>
</table>

SYROS

<table>
<thead>
<tr>
<th>Shape of the MCC</th>
<th>Domal (?)</th>
<th>Asymmetric dome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematics of extension</td>
<td>no dominant sense (?)</td>
<td>Top-to-northeast</td>
</tr>
<tr>
<td>Post-HP highest metamorphic grade</td>
<td>Green schist</td>
<td>Green schist</td>
</tr>
<tr>
<td>Radiometric record of extension</td>
<td>~<30-11 Ma</td>
<td>(T>50°C or more / Syros)</td>
</tr>
<tr>
<td>Main period of exhumation</td>
<td>?</td>
<td>22-11 Ma</td>
</tr>
</tbody>
</table>

Figure 9-Tirel et al
TABLE 1. VARIABLES AND PARAMETERS USED IN THE EXPERIMENTS

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values and Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial crustal thickness</td>
<td>30, 35, 40, 45, 50, 55, 60 km</td>
<td>Continental crust</td>
</tr>
<tr>
<td>Boundary velocity v</td>
<td>1, 1.3, 1.6, 2, 2.3, 2.6, 3 cm.yr⁻¹</td>
<td>Applied on left side (see Fig. 2)</td>
</tr>
<tr>
<td>Depth of the thermal lithosphere</td>
<td>60, 80, 100, 120 km</td>
<td>Applied geotherms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values and Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature at the base of the lithosphere</td>
<td>1330°C</td>
<td></td>
</tr>
<tr>
<td>Power law constant (A_1)</td>
<td>(1.26 \times 10^{-1}) MPa⁻¹.s⁻¹</td>
<td>Quartz-diorite (crust)</td>
</tr>
<tr>
<td>Power law constant (n_1)</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Creep activation energy (E_{a1})</td>
<td>219 kJ.mol⁻¹</td>
<td>Quartz-diorite (crust)</td>
</tr>
<tr>
<td>Power law constant (A_2)</td>
<td>(7 \times 10^4) MPa⁻¹.s⁻¹</td>
<td>Olivine (mantle)</td>
</tr>
<tr>
<td>Power law constant (n_2)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Creep activation energy (E_{a2})</td>
<td>520 kJ.mol⁻¹</td>
<td>Olivine (mantle)</td>
</tr>
<tr>
<td>Density (\rho_1)</td>
<td>2800 kg.m⁻³</td>
<td></td>
</tr>
<tr>
<td>Density (\rho_2)</td>
<td>3330 kg.m⁻³</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity (k_1)</td>
<td>2.5 W.m⁻¹.K⁻¹</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity (k_2)</td>
<td>3.3 W.m⁻¹.K⁻¹</td>
<td></td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>(3 \times 10^4) K⁻¹</td>
<td></td>
</tr>
<tr>
<td>Internal heat production at surface (H_s)</td>
<td>(10^{-9}) W.kg⁻¹</td>
<td></td>
</tr>
<tr>
<td>Specific Heat (C_p)</td>
<td>(10^7) J.kg⁻¹.K⁻¹</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Tirel et al.
Second exhumation on Tinos (Parra)

Moho Naxos core (Buick) >20-17 Ma
~ 16-15 Ma Naxos core (Duchêne)
~ 24-21 Ma
~ 15 Ma

equiv. 5 kbar

geotherm in type 1 experiment (= interfering MCCs) with 60 km-thick lithosphere (orange marker in Fig. 3)

geotherm for a 100 km-thick lithosphere (green marker in Fig. 3)

50 Ma ?

>20-17 Ma

500°C

800°C

Moho

50 km

Figure 10-Tirel-et-al