Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: Review and updated kinematic reconstruction

Shihu Li a,⁎, Eldert L. Advokaat b, Douwe J.J. van Hinsbergen b, Mathijs Koymans b, Chenglong Deng c, Rixiang Zhu a

a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
b Department of Earth Sciences, Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands

ARTICLE INFO

Keywords:
Extrusion
Rotation
Indochina Block
Tibetan Plateau
Paleomagnetic

ABSTRACT

Paleomagnetic data have long been used to hypothesize that the Cenozoic extrusion of the Indochina Block along the left-lateral Ailao Shan-Red River fault, as a result of the India-Asia collision, may have been associated with a major southward paleolatitude shift of as much as 10–15°, and a vertical-axis rotation of as much as 25–40°. However, although numerous paleomagnetic studies have been conducted in the southeast margin of the Tibetan Plateau and in the Indochina region during the last few decades, the detailed rotation as well as the latitudinal displacement of the Indochina Block remain controversial because of apparently contradicting paleomagnetic results. Geological constraints also yield contrasting estimates on the amount of displacement along different segment of the Ailao Shan-Red River fault: 700 ± 200 km in the northwest, but only ~250 km in the southeast.

In this paper, the available paleomagnetic data from the southeast margin of the Tibetan Plateau and Indochina, as well as the South China Block, from Jurassic and younger rocks are compiled and critically reviewed using the new paleomagnetic toolkit on Paleomagnetism.org. Our results show that (1) the South China Block has declinations that reveal no significant rotations relative to Eurasia since latest Jurassic. Inclinations are consistently shallower than expected, which is likely the result of inclination shallowing in sedimentary rocks; (2) there is no paleomagnetically resolvable southward motion of the Indochina Block with respect to Eurasia based on the paleomagnetic data. Paleomagnetic inclinations are in fact lower than expected, probably due to inclination shallowing in sediments; (3) paleomagnetic declinations reveal large, more or less coherently rotating blocks in the northern Indochina domain and the SE Tibetan margin that rotated up to 70° clockwise, much more than the ~10–15° rotation of the stable, SE part of the Indochina Block. These blocks are bounded by fold-thrust belts and strike-slip faults, which we interpret to have accommodated these block rotations during the Cenozoic. We designed a new tool on the online open-access portal Paleomagnetism.org that allows testing whether Euler rotations in a kinematic reconstruction fulfill paleomagnetic data. Using this tool, we built a first-order kinematic reconstruction of rotational deformation of northwest Indochina in Cenozoic. We show that the northwestern part of Indochina extruded 350 km more along the Ailao Shan-Red River fault than the southeastern part accommodated by internal northwest Indochina rotation and deformation. Estimates of 250 km of extrusion of the southeastern part of the Indochina then predicts ~600 km of left-lateral motion along the northwestern part of the Ailao Shan-Red River fault, which reconciles the small and large estimates that prevail in the literature of extrusion of Indochina from the Tibetan realm during the Cenozoic India-Asia collision.

1. Introduction

The Tibetan Plateau, the largest and highest continental plateau in the world, is the product of convergence between the Indian and Eurasian plates, and the collision of the Indian and Eurasian continental crusts since the Early Cenozoic (see review in Hu et al., 2016). This collision has not only led to the formation of the Himalaya orogenic belt, and major shortening in the Tibetan Plateau as well as in central Asia to the north (Molnar and Tapponnier, 1975), but was also associated with extrusion of Indochina along the Ailao Shan-Red River.
fault in the east, and the Shan Scarp-Sagaing fault in the west (Tapponnier et al., 1982; Leloup et al., 1995; Bertrand et al., 2001; Replumaz and Tapponnier, 2003; van Hinsbergen et al., 2011a). A long-lasting kinematic problem in the tectonic evolution of the Tibetan Plateau is how and where the crustal deformation accommodated the major plate convergence between India and Eurasia since collision. The age of collision is debated, ranging from as old as ~70 Ma to as young as ~34 Ma (e.g., Hu et al., 2016), but is widely accepted to be between 60 and 50 Ma based on arrival of Asian sediments in Tibetan Himalayan stratigraphy (e.g., Orme et al., 2014; Hu et al., 2015, 2016), the onset of Tibetan Himalayan high-pressure metamorphism (e.g., Leech et al., 2005), and paleomagnetism (e.g., Dupont-Nivet et al., 2010; Najman et al., 2010; Sun et al., 2010; Yi et al., 2011; Lippert et al., 2014; Ma et al., 2014). An alternative proposal suggests that this collision reflects emplacement of ophiolites that are widespread in the suture instead (e.g., Aitchison et al., 2007; Jagoutz et al., 2015), but these ophiolites were paleomagnetically shown to have formed adjacent to Lhasa, and are unconformably overlain and underthrusted by Cretaceous, Lhasa-derived clastic sedimentary rocks (e.g., Orme et al., 2014, Huang et al., 2015). A 50–60 Ma collision age shows an amount of post-collisional India-Asia convergence, constrained by Indo-Atlantic ocean basin reconstructions, of ~3000 to 5000 km (Molnar and Stock, 2009; Copley et al., 2010; van Hinsbergen et al., 2011b, 2012).

Tapponnier et al. (1982) recognized that not only N-S shortening played a role in accommodating N-S India-Eurasia convergence in Tibet, but that also major strike-slip faults had developed, including the left-lateral Ailao Shan-Red River fault (Fig. 1), along which crust has been extruded from the collision zone. Since that time, several views have been put forward based on disparate estimates on the amount of displacement along the Ailao Shan-Red River fault (Fig. 2). While there is agreement on major displacements, estimates vary from as low as ~250 km, to ~700 km or as large as 1200–1500 km (Leloup et al., 1995), and associated clockwise rotations are predicted to be anywhere between a few degrees and 40° (Tapponnier et al., 1982, 1990, 2001; Lee and Lawyer, 1995; Leloup et al., 1995; Wang and Burchfiel, 1997; Hall, 2002; Replumaz and Tapponnier, 2003; Searle, 2006; Royden et al., 2008; Fyhn et al., 2009; van Hinsbergen et al., 2011a). The low end-member of the displacement estimates has been taken to suggest that Indochina extrusion plays only a modest role in accommodating India-Eurasia convergence (e.g., Hall, 2002; Searle, 2006; van Hinsbergen et al., 2011a), whereas the high end-member suggests that Indochina was originally located north of the Himalaya and its extrusion was a prime mechanism accommodating post-collisional convergence (Tapponnier et al., 1982, 1990, 2001; Lee and Lawyer, 1995; Leloup et al., 1995; Replumaz and Tapponnier, 2003; Royden et al., 2008; Ingalls et al., 2016). The two schools of thought in addition predict very different amounts of paleolatitudinal motion of Indochina relative to the South China Block, and of clockwise rotation of Indochina in the Cenozoic.

Paleomagnetism provides a direct quantitative tool to constrain latitudinal motion and vertical axis rotation, and consequently a large paleomagnetic database of Indochina and South China has been acquired over the last decades (Otofuji et al., 1990, 1998, 2010, 2012; Funahara et al., 1992, 1993; Huang and Opdyke, 1992, 1993, 2015; Yang and Besse, 1993; Yang et al., 1995, 2001a, b; Richter and Fuller, 1996; Sato et al., 1999, 2001, 2007; Yoshioka et al., 2003; Tamai et al., 2007).

Fig. 1. Simplified geological map showing the main tectonic units of Southeast Asia. The white and black lines represent major sutures and faults, respectively. The GPS velocity fields showing relative motions of SE Asia with respect to Eurasia are from Vigny et al. (2003) and Gan et al. (2007). Abbreviations: AKMS: Anyimaqin-Kunlun-Muztagh suture, ASRRF: Ailao Shan-Red River fault, CN-ML-CM: Changning-Menglian-Chiang Mai suture, I-BT-R: Inthanon-Bentong-Raub suture, DBPF: Dien Bien Phu fault, IBR: Indo-Burma Ranges, SIB: Sibumasu Block, WB: West Burma Block.
et al., 2004; Takemoto et al., 2005, 2009; Charusiri et al., 2006; Aihara et al., 2007; Tanaka et al., 2008; Kondo et al., 2012; Li et al., 2012, 2013a; Chi and Geissman, 2013; Tong et al., 2013, 2015, 2016; Fujiwara et al., 2014; Kornfeld et al., 2014a, b; Gao et al., 2015; Wang et al., 2016). Achache et al. (1983) is the first to review the available Cretaceous and Cenozoic paleomagnetic data from Southeast Asia to test the amount of latitudinal motion and rotation of the Indochina Block, and they argued that the Indochina Block experienced a 24 ± 12° clockwise rotation and a 4.6 ± 7.6° (~500 ± 1280 km) southward motion relative to the Eurasia after the Middle Jurassic. Since then, a large number of paleomagnetic studies followed, which did not provide a unified, but a rather conflicting view on deformation in Indochina: paleomagnetic declinations range from ~120° clockwise rotation to no significant rotation (e.g., Yang and Besse, 1993; Chen et al., 1995; Yang et al., 1995; Li et al., 2012; Chi and Geissman, 2013; Tong et al., 2013), while the proposed latitudinal displacement based on paleomagnetic inclinations varies from as much as 1500 km southward motion in the Cenozoic to even northward motion relative to South China (see review in van Hinsbergen et al., 2011a). The rotation results suggest that the Indochina region between the Ailao Shan-Red River fault and the Shan Scarp-Sagaing fault is not occupied by a single, rigid block, but that the region suffered internal deformations and vertical axis block rotations (Aihara et al., 2007; Sato et al., 2001, 2007; Tanaka et al., 2008; Yang et al., 2001b; Kondo et al., 2012; Tong et al., 2013). The reasons for this discrepancy may be several. First, in such a large paleomagnetic dataset, there may be a large variation in quality and reliability of the data, for instance, owing to major differences in the amount of data per study. A few old datasets were not subjected to complete demagnetization (e.g., Maranate and Vella, 1986) and some of the data are probably remagnetized (Chen et al., 1995; Yamashita et al., 2011; Kornfeld et al., 2014a; Huang and Opdyke, 2015; Tsuchiyama et al., 2016; Li et al., 2017). Second, some of the paleomagnetically-detected rotations may reflect localized deformation instead of a rigid block rotation in such a tectonically active region (e.g., Yang et al., 2001b; Tong et al., 2013). Third, most of these paleomagnetic data were derived from Mesozoic rocks, and the scarcity of Cenozoic paleomagnetic data prevents us from better understanding the rotation and latitudinal displacement of the Indochina Block during...
the Cenozoic deformation of Tibetan Plateau. Last, most of, if not all, paleomagnetic studies were conducted on sedimentary red beds, which generally shows a strong tendency to inclination shallowing due to compaction that results in erroneous paleolatitude estimates (e.g., King, 1955; Tan et al., 2003; Tauxe, 2005; Kodama, 2012). Some studies from the South China Block (Narumoto et al., 2006; Sun et al., 2006; Wang and Yang, 2007; Li et al., 2013b) and Indochina (Li et al., 2013a; Tong et al., 2013, 2015) took these effects into account, but most of the previous studies did not address this problem. Therefore, a critical assessment and review of these data is timely.

Recently, an online paleomagnetic toolset has become available that allows for an efficient integration of major paleomagnetic datasets (www.paleomagnetism.org, Koymans et al., 2016). In this paper, we use this toolset to review and integrate the extensive paleomagnetic dataset (177 individual sites) obtained from Jurassic and younger rocks of Indochina, the southeastern Tibetan Plateau, and the South China Block. We will use this integrated dataset to critically assess the tectonic conclusions drawn on the extrusion of Indochina as a whole. To this end, we review the structural and stratigraphic constraints on deformation within the Indochina region and then build the paleomagnetic database. We will discuss the role of well-known paleomagnetic artifacts, such as inclination shallowing, in previous paleolatitudeinal motion estimates, and provide an improved kinematic restoration of the internal deformation that occurred within the larger Indochina region since the Early Cenozoic that for the first time reconciles structural and paleomagnetic constraints.

2. Geological setting

2.1. Tectonic framework

SE Asia comprises a complex collage of continental fragments separated by Paleozoic to Cenozoic sutures where oceanic basins were consumed. These include the blocks of North China, South China, Indochina, Sibumasu, and West Burma in the east, and the continent-derived rocks of the Tethys Himalaya, Lhasa, Qiangtang, and the Northeast Tibetan terranes as well as the Songpan-Ganzi flysch belt, together forming the Tibetan Plateau in the west (Fig. 1). All of these continental blocks are interpreted as derived from Gondwana since the Early Paleozoic (e.g., Metcalfe, 2013). They separated from Gondwana, drifted to the north and eventually accreted to North China and Siberia throughout the Paleozoic and Mesozoic, associated with the successive opening and closure of three major intervening Tethyan oceans, the Paleo-Tethys (Devonian-Triassic), Meso-Tethys (late Early Permian-Late Cretaceous), and Neo-Tethys (Late Triassic-Late Cretaceous) (e.g., Metcalfe, 2013). Below we briefly introduce the geological backgrounds of the South China, Indochina, Sibumasu, and West Burma blocks, which are relevant to the discussion of the paleomagnetic data in this study.

2.1.1. South China Block

The South China Block is separated from the North China Block to the north by the Qinling-Dabie-Sulu suture, from the Tibetan blocks by the Longmen Shan fold-thrust belt to the west, and by the Jinghsia Jiang-Song Ma suture to the northeast (Metcalfe, 2013, Fig. 1). The block consists of the Yangtze Craton in the northwest (Fig. 1). The South China Block collided with Indochina in Late Triassic time, which marks the main remanent of the Paleo-Tethys ocean (Wu et al., 1995; Metcalfe, 1996; Zhong, 1998). The Indochina Block, like the South China Block, is also thought to have derived from the NE of Gondwana in the Early Paleozoic, and rifted and drifted to the north since the Devonian. The timing and style of collision between Indochina and South China remain controversial, and estimated collision ages range from the Triassic, Early Paleozoic or Middle Carboniferous along the Song Ma, Song Da or Dianqiong suture zone (Cai and Zhang, 2009; Faure et al., 2014, Fig. 1). In the Cenozoic time, the Indochina Block became separated from the South China Block along the Ailao Shan-Red River fault zone, which roughly follows the Jinghsia Jiang-Song Ma suture.

2.1.2. Indochina Block

The Indochina Block is bounded by the Jinghsia Jiang-Song Ma suture to the northeast, and the Changning-Menglian-Chiang Mai-Inthanon suture zone to the west (Metcalfe, 2013, Fig. 1). The Song Ma suture is generally regarded as a branch of the Paleo-Tethys, while the Changning-Menglian-Chiang Mai-Inthanon suture zone represents the main remanent of the Paleo-Tethys ocean (Wu et al., 1995; Metcalfe, 1996; Zhong, 1998). The Indochina Block, like the South China Block, is also thought to have derived from the NE of Gondwana in the Early Paleozoic, and rifted and drifted to the north since the Devonian. The timing and style of collision between Indochina and South China remain controversial, and estimated collision ages range from the Triassic, Early Paleozoic or Middle Carboniferous along the Song Ma, Song Da or Dianqiong suture zone (Cai and Zhang, 2009; Faure et al., 2014, Fig. 1). In the Cenozoic time, the Indochina Block became separated from the South China Block along the Ailao Shan-Red River fault zone, which roughly follows the Jinghsia Jiang-Song Ma suture.

2.1.3. Sibumasu Block

The Sibumasu Block is inferred to be an eastern extension of the Qiangtang Block of Tibet, and is thought to have formed an eastern continuation of the Gissar continental fragments of Iran and Afghanistan (Gengör, 1984). It is bounded to the west and southwest by the Mogok Metamorphic Belt, the Andaman Sea, and the Medial Sumatra Tectonic Zone (Barber and Crow, 2009). To the east the Changning-Menglian-Chiang Mai-Inthanon and Bentong-Raub suture zones separate Sibumasu from the Indochina and East Malaya further to the east (Fig. 1). The Sibumasu/Qiangtang Block is thought to have rifted from Gondwana in the Early Permian (Fang et al., 1989; Huang and Opdyke, 1991a; Metcalfe, 2002). It separated from Gondwana and drifted to the north, opening Meso-Tethys in its wake. The Sibumasu Block collided with Indochina in Late Triassic time, which marks the closure of Paleo-Tethys (Carter et al., 2001; Sone and Metcalfe, 2008; Jian et al., 2009; Wang et al., 2010b; Zhao et al., 2015).

2.1.4. West Burma Block

The West Burma Block is bounded by Mogok metamorphic belt-Sagaing fault to the east and the Indo-Burma Ranges to the west (Fig. 1). The tectonic affiliation of the West Burma Block is hotly debated in the past, which hinges on whether it is correlated to the Lhasa block (Mitchell, 1993; Searle et al., 2007) or to the West Sumatra block (Barber and Crow, 2009). However, based on detailed petrology, XRD diffraction, heavy mineral and detrital zircon U-Pb data, Sevastjanova et al. (2016) argued that the West Burma Block was part of Eurasia after the late Triassic. After the Late Cretaceous, it moved northwards along the Gaoligong-Sagaing fault during the India-Asia collision.

2.2. Cenozoic tectonic deformation of southeast Tibet

The southeast margin of Tibet Plateau is intensely deformed since Late Cretaceous and particularly Cenozoic time due to convergence and collision between India and Eurasia. As a result, a series of regional north- and northwest-striking strike-slip faults (e.g., Wang et al., 1998a,
The left-lateral Ailao Shan-Red River shear zone lies at the basis of the Indochina extrusion model (Tapponnier et al., 1982, 1990; Leloup separating the Chuandian terrane from the South China Block. China Sea along the southwestern margin of the South China Block complexes from SW China, through Vietnam, and towards the South Xuelong Shan, Diancang Shan, Ailao Shan and Day Nui Con Voi have begun as late as ~5 Ma (Zhu et al., 2008; Wang et al., 2009), but some fault branches may branching faults or transferred to extension locally, resulting in a northwest to the south of Yunnan and terminating before reaching the It has a length of > 1000 km, extending from eastern Tibet in the di (Fig. 2,Table 1).

<table>
<thead>
<tr>
<th>Fault name</th>
<th>Fault length (km)</th>
<th>Sense</th>
<th>Displacement (km)</th>
<th>Age (Ma)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chongshan shear zone</td>
<td>250</td>
<td>L</td>
<td>Unknown</td>
<td>32–27</td>
<td>Wang et al. (2006)</td>
</tr>
<tr>
<td>Gaoligong shear zone</td>
<td>600</td>
<td>R</td>
<td>Unknown</td>
<td>18–13</td>
<td>Lin et al. (2009), Zhang et al. (2012a)</td>
</tr>
<tr>
<td>Wangchao/Maoping shear zone</td>
<td>450</td>
<td>L</td>
<td>150–160</td>
<td>32–17</td>
<td>Wang et al. (2006), Leploup et al. (2008)</td>
</tr>
<tr>
<td>Three Pagodas shear zone</td>
<td>250</td>
<td>L</td>
<td>160</td>
<td>36–33</td>
<td>Mitchell (1993), Curray (2005), van Hinsbergen et al. (2011a)</td>
</tr>
<tr>
<td>Saugea fault</td>
<td>R 460</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xianshuihe-Xiaojiang fault</td>
<td>L + N 78–100</td>
<td></td>
<td>13</td>
<td></td>
<td>Roger et al. (1995), Zhang et al. (2004), Wang et al. (2009), Li et al. (2015)</td>
</tr>
<tr>
<td>Red River fault</td>
<td>R 40</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dayingjiang</td>
<td>135</td>
<td>L + N</td>
<td>4</td>
<td>Unknown</td>
<td>Wang et al. (2014)</td>
</tr>
<tr>
<td>Ruili fault</td>
<td>L + N 11</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanting river fault</td>
<td>380</td>
<td>L</td>
<td>8</td>
<td>5</td>
<td>Lacassin et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40–50</td>
<td>Pre-Pliocene</td>
<td>Wang and Burchfiel (1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R 17</td>
<td></td>
<td>5</td>
<td></td>
<td>Wang et al. (2014)</td>
</tr>
<tr>
<td>Drien Bien Phu fault</td>
<td>150</td>
<td>L</td>
<td>12.5</td>
<td>5</td>
<td>Lai et al. (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unknown</td>
<td>130, 29–26</td>
<td>Bui et al. (2017)</td>
</tr>
<tr>
<td>Mengxiang fault</td>
<td>180</td>
<td>L</td>
<td>24</td>
<td>Unknown</td>
<td>Lacassin et al. (1998), Wang et al. (2014)</td>
</tr>
<tr>
<td>Wan Ha fault</td>
<td>140</td>
<td>L</td>
<td>6</td>
<td>Unknown</td>
<td>Wang et al. (2014)</td>
</tr>
<tr>
<td>Jinghong fault</td>
<td>110</td>
<td>L</td>
<td>11</td>
<td>Unknown</td>
<td>Wang et al. (2014)</td>
</tr>
<tr>
<td>Menglian fault</td>
<td>120</td>
<td>L</td>
<td>5.5</td>
<td>Unknown</td>
<td>Wang et al. (2014)</td>
</tr>
<tr>
<td>Lashio fault</td>
<td>85</td>
<td>L</td>
<td>2.5–6.5</td>
<td>Unknown</td>
<td>Wang et al. (2014)</td>
</tr>
<tr>
<td>Kyoukme fault</td>
<td>210</td>
<td>L</td>
<td>2.6</td>
<td>Unknown</td>
<td>Wang et al. (2014)</td>
</tr>
<tr>
<td>Nam Ma fault</td>
<td>215</td>
<td>L</td>
<td>13</td>
<td>Unknown</td>
<td>Wang et al. (2014)</td>
</tr>
<tr>
<td>Mae Chan fault</td>
<td>310</td>
<td>L</td>
<td>4</td>
<td>Unknown</td>
<td>Wang et al. (2014)</td>
</tr>
</tbody>
</table>

L: left-lateral, R: right-lateral, N: normal.

Fig. 2), tight folds with NW-NNW-trending axes in Mesozoic-Cenozoic red beds, and a physiography of high elevation mountainous regions with low-gradient plateau margin and low-relief relicts that are deeply incised by continental scale rivers (Clark et al., 2006; Liu-Zeng et al., 2008) were formed during the Cenozoic.

Owing to variation in the amount of Cenozoic exhumation, the major strike-slip systems in and around the Indochina and Sibumasu blocks are exposed as ductile, metamorphic shear zones, such as the Ailao Shan, Chongshan, Gaoligong, and Mogok shear zones, or brittle faults, such as the Xianshuihe-Xiaojiang, Red River, and Saugea faults (Fig. 2, Table 1).

The left-lateral Xianshuihe-Xiaojiang fault is one of the most important faults in SE margin of the Tibetan Plateau that accommodate diffuse deformation and differential rotations around the eastern Himalayan syntaxis (Schoenbohm et al., 2006a; Wang et al., 1998a). It has a length of > 1000 km, extending from eastern Tibet in the northwest to the south of Yunnan and terminating before reaching the Red River fault (Fig. 2). The total offset along the Xianshuihe-Xiaojiang fault, which is about 80–100 km, is partitioned along the numerous branching faults or transferred to extension locally, resulting in a number of basins (Wang et al., 1998a, 2008b). The Xianshuihe-Xiaojiang fault initiated at ~13 Ma (Roger et al., 1995; Zhang et al., 2004; Wang et al., 2009; Li et al., 2015), but some fault branches may have begun as late as ~5 Ma (Zhu et al., 2008; Wang et al., 2009), separating the Chuanbian terrane from the South China Block.

The left-lateral Ailao Shan-Red River shear zone lies at the basis of the Indochina extrusion model (Tapponnier et al., 1982, 1990; Leploup et al., 1995). It is associated with four metamorphic complexes: the Xuelong Shan, Diancang Shan, Ailao Shan and Day Nui Con Voi complexes from SW China, through Vietnam, and towards the South China Sea along the southwestern margin of the South China Block (Leploup et al., 1995, Fig. 2). The well-developed foliation and lineation in the metamorphic rocks indicate sinistral shearing during the ductile deformation. Controversy exists on the timing and amount of displacement of the Ailao Shan-Red River shear zone. One school of thought argues that the sinistral slip along the lithosphere-scale Ailao Shan-Red River shear zone occurred between 34 and 17 Ma (Schärer et al., 1990, 1994; Leploup et al., 1995, 2001; Zhang and Schärer, 1999; Gilley, 2003). Using geological markers such as ophiolite belts, Mesozoic red beds, Upper Permian basaltic, Triassic arc volcanics, and belts of Cretaceous granites and norites exposed on either side of the northwestern part of the Ailao Shan-Red River shear zone, estimates of sinistral displacement were made of 700 ± 200 km (Leloup et al., 1995, 1997), or even as large as 1500 km (Yang and Besse, 1993). The displacement of the Ailao Shan-Red River shear zone in this school of thought was kinematically linked to and accommodated by the opening of the South China Sea (Briais et al., 1993). Another school of thought, however, based estimates on the amount of displacement on structural offshore northern Vietnam as well as kinematic reconstructions of SE Asia, argued for displacement of no more than some 250 km at the southern end of the fault (Wang and Burchfiel, 1997; Hall, 2002; Searle, 2006; Searle et al., 2010; Clift et al., 2008; van Hinsbergen et al., 2011a; Mazur et al., 2012), with an age of slip ranging from 32 to 22 Ma (Searle et al., 2010; Cao et al., 2011; Liu et al., 2012), or as short as 27–22 Ma (Wang et al., 1998b). How these estimates should be reconciled remains enigmatic and will be discussed in this paper. In its latest motions, since the Late Miocene, Red River fault inverted (Leploup et al., 1993; Schoenbohm et al., 2006b; Li et al., 2013a) and accommodated ~40 km right-lateral strike-slip displacement (Allen et al., 1984; Wang et al., 1998a; Replumaz and Tapponnier, 2003; Schoenbohm et al., 2006b).

To the west of Sibumasu, the N-S striking Saugea fault is a 1200 km
long, currently active, right-lateral strike-slip fault that has accommodated Late Cenozoic northward motion of the West Burma Block relative to Sibumasu (Fig. 2). This northward motion is interpreted as the result of strain partitioning of the highly oblique convergence between India and Sibumasu, whereby the Sagaing fault accommodates the northward component of motion, and the eastward component of motion is taken up by eastward subduction below the West Burma Block (Bertrand et al., 1999; Vigny et al., 2003). It runs along most of the N-S length of Myanmar, cuts the western margin of the Mogok belt, and connects south to the active forearc spreading center in the Andaman Sea via a series of short transfer faults (Vigny et al., 2003; Curray, 2005, Figs. 1 and 2). The total displacement of the Sagaing fault is estimated about 460 km since ~11 Ma (Mitchell, 1993; Curray, 2005).

To the east of the Sagaing fault lies the ductile right-lateral Gaoligong shear zone and the Shan Scarp that are regarded as the western boundary of the extruding Indochina-Sibumasu domain during the Cenozoic prior to the activity of the Sagaing fault (Bertrand et al., 1999, 2001; Socquet and Pubellier, 2005; Wang et al., 2006; Akciz et al., 2008; van Hinsbergen et al., 2011a). Geochronological data suggested that the strike-slip shearing along the Gaoligong shear zone and Shan Scarp occurred between the Oligocene and Middle Miocene (Bertrand et al., 2001; Wang et al., 2006; Searle et al., 2010; Zhang et al., 2012a), contemporaneous with the left-lateral strike-slip on the Ailao Shan-Red River shear zone. There is no field-based estimate on the total amount of dextral strike-slip along the Gaoligong shear zone and Shan Scarp, although van Hinsbergen et al. (2011a) tentatively suggested some 500–600 km to restore the West-Burma Block south of the Late Eocene-Oligocene Wang Chao and Three Pagodas faults that have no continuation in the West Burma Block.

The Chongshan shear zone is interpreted to be a conjugate shear zone to the Ailao Shan-Red River and Gaoligong shear zones to accommodate the southeastward extrusion of Indochina/Sibumasu (Socquet and Pubellier, 2005; Wang et al., 2006; Akciz et al., 2008; Zhang et al., 2010, Fig. 2). Structural studies suggested that the shear zone comprises both dextral and sinistral strike-slip shear from Oligocene to Middle Miocene times (Akciz et al., 2008; Zhang et al., 2010). Thus, the region between the Gaoligong Shan shear zone and the Ailao Shan-Red River shear zone was cut into two segments by the Chong Shan shear zone (Akciz et al., 2008; Zhang et al., 2010).

The left-lateral Wang Chao (also named Ma Ping) and Three Pagodas shear zones were regarded as boundaries of the earliest stage of Indochina’s extrusion during Late Eocene-Early Oligocene time (Lacassin et al., 1997; Morley, 2007, Fig. 2). The offset along the Wangchao and Three Pagodas shear zone is estimated at about 160 km each (Lacassin et al., 1997; Morley, 2007).

Except the large-scale Sagaing, Xianshuihe-Xiaojiang and Red River fault, which are hundreds to more than a thousand kilometers long, numerous smaller strike-slip faults (roughly 100 to about 200 km long) developed in the SE margin of the Tibetan Plateau, especially the region southwest of the Red River fault (Fig. 2). These faults include a set of NE-SW, left-lateral faults and one NW-SE, right-lateral fault. The most prominent of these are Ruili, Wanding, Nanting, Mengxing, Ma Chan, and Dien Bien Phu faults (Fig. 2). Based on geomorphology, river bends across the faults, and fault bounded basins, most of these faults are suggested to be left-lateral, active at least in Late Miocene or Pliocene times but possibly before, with at least tens of kilometers displacement (Wang and Burchfiel, 1997; Wang et al., 1998a; Lacassin et al., 1998; Socquet and Pubellier, 2005; Wang et al., 2008a, 2014, see Table 1 for details). Some of the rivers show hairpin geometries when crossing these active strike-slip faults, which may suggest a regional reversal of slip sense from right to left-lateral sometime between 5 and 20 Ma (Lacassin et al., 1998). However, the detailed slip history of these faults remains poorly constrained.

3. Paleomagnetic data compilation

3.1. Data selection

We compiled a comprehensive paleomagnetic dataset based on 177 paleomagnetic sites based on 17,179 paleomagnetic directions from 81 paleomagnetic studies from Jurassic and younger rocks from South China, Indochina, and the Sibumasu Block. Paleomagnetic data were not included if they: (1) came from rocks older than Triassic or Quaternary and younger; (2) came from studies that do not provide information on demagnetization procedures; (3) were not analyzed by principle component analysis; (4) were likely remagnetized according to the original authors; and (5) if site k- or K-values (precision parameters of Fisher (1953) on directions or poles, respectively) are lower than 7 for sediment sites and 50 for volcanics. Since many of the available paleomagnetic data are derived from Cretaceous rocks deposited during the Cretaceous normal superchron, the presence of reversals is not a general requirement. Remagnetized directions with precise age constraints on magnetization acquisition (e.g., Kornfield et al., 2014c; Li et al., 2017), and anomalous directions due to local tectonics as pointed out by the original authors (e.g., Tong et al., 2013), are presented but not included in the final discussion.

3.2. Paleomagnetic data compilation

Paleomagnetic data are typically provided in the literature as site averages of paleomagnetic directions and described using Fisher’s (1953) statistics. Subsequently, such site averages are then averaged to obtain a regionally meaningful paleomagnetic direction. Such an approach gives equal statistical weight to every site average, even though the number of data per site may strongly vary. The main source of scatter in paleomagnetic data derives from paleosecular variation (PSV) of the geomagnetic field, which provides an angular dispersion of tens of degrees (e.g., Butler, 1992; Tauxe and Kent, 2004; Johnson et al., 2008; Deenen et al., 2011). On time scales of tens to hundreds of thousands of years, paleosecular variation averages out, and therefore, paleomagnetists collect a large number of specimens from sedimentary rocks, or a large number of lava sites, to approximate the paleomagnetic pole. Given the large dispersion of paleomagnetic directions due to PSV, large sites will provide a more reliable paleomagnetic direction than small sites, and we therefore aim to weigh the statistical importance of sites as a function of the amount of samples that they were based on (see Deenen et al., 2011). To that end, we aim to combine all paleomagnetic directions (n) of a set of sites from a region rather than site averages to come to an average paleomagnetic pole. As a test to identify whether major internal vertical axis rotations occurred in a region, we test whether the obtained paleomagnetic scatter, expressed as the A95 around the paleomagnetic pole, can be straightforwardly ascribed to PSV, following the n-dependent reliability criteria of Deenen et al. (2011). Unfortunately, the original individual specimen directions are seldom provided in the published literature. We therefore parametrically sampled n directions from a site that was based on n specimens, randomly drawing these from a distribution with a Fisher’s (1953) precision parameter K on virtual geomagnetic poles (VGP’s) as reported from that site, using the online paleomagnetic analysis tool www.paleomagnetism.org (Koyman et al., 2016). Most paleomagnetic studies do not provide the K values, but instead report the k parameter, which is the precision parameter on paleomagnetic directions instead of VGP’s. The k value is generally somewhat higher than the K value. An estimate of K can be made from k if the paleolatitude of the site is known (e.g., Deenen et al., 2011), but since most sites come from clastic sediments prone to inclination shallowing, this correction introduces another uncertainty. We have therefore taken a simplified approach and assumed k and K are equal – which leads to similar results when tested against real data from Indochina of Li et al. (2017). This means in practice that the data scatter that results from our parametric sampling
approach may somewhat overestimate and provides a conservative estimate of the real scatters involved in the original data. All the reversed polarity directions are flipped to the normal polarity directions. The site averages in our compilation are based on the parametrically sampled sites, and may thus deviate slightly from the published averages. All data files, and references to the published literature on which they are based, are provided in the Supplementary Information 1.

4. Results

4.1. Data integration

We compare the paleomagnetic data from our database against the Global Apparent Polar Wander Path (GAPWaP, Torsvik et al., 2012) rotated in Eurasian coordinates. We computed the declinations and inclinations at reference points 30°N, 105°E for the South China Block, and 23°N, 100.8°E for Indochina. The compiled paleomagnetic data are plotted in different tectonic blocks with different colors (Fig. 3): the Chuandian Terrane is marked in cyan to be distinguished from the rigid South China Block (marked in green). Since the paleomagnetic declinations in Indochina Block exhibit systematic variation in different parts (see detailed explanation below, Fig. 4), we choose the known faults (Dien Bien Phu, Lancang, and Nanting faults) in the interior of the Indochina Block as boundaries and separate the Indochina Block into four sub-terranes (Fig. 4): Southern Indochina (Vietnam in Royden et al., 2008, marked in orange), Southern Simao (marked in blue), Northern Simao (marked in purple), and Lanping (marked in yellow). In addition, paleomagnetic data from rare volcanic or plutonic sites are marked in red; outlying directions that reflect localized deformation as interpreted by the original author or later studies are marked in black (Figs. 3 and 4).

The averages of each sub-terrane are calculated based on both site and individual, parametrically sampled direction averages (Figs. 5 and 6). Age estimates on sampled sedimentary sections are typically within a geologic period with age errors spanning an entire period, e.g., Early Cretaceous (145–100 Ma) was assigned at 122.5 Ma with an error of 22.5 Ma. The following ages are generally constrained: Early, Middle, and Late Jurassic, Early and Late Cretaceous, Paleocene, Eocene, Oligocene and Mio-Pliocene. We also calculate independent APWPs for the South China Block, Southern Indochina, Southern Simao and Northern Simao based on available data (Table 2), which we computed in 10 Myr time intervals from 180 to 40 Ma, using a 20 Myr sliding window, which is the same approach as used in the reference GAPWaP (Torsvik et al., 2012). We computed the APWP using site averages (i.e., the approach used in calculating the GAPWaP that does not take within-site uncertainties into account), and on individual direction averages that does take the data amount and dispersion of each site into account.

4.2. Inclination trends

Inclinations of sites or combined poles of all blocks are consistently lower than those predicted by the Eurasia APWP (Figs. 5–7). The newly calculated South China APWP provides an inclination that is consistently ~20 ± 5° shallower than predicted by the Eurasian APWP for the Cretaceous and Paleogene (Fig. 7). The few data points from volcanic rocks of the Cretaceous of the South China Block (red dots in Fig. 5) are close to or within error of the predicted paleolatitude.
The inclinations of the Indochina Block show inclinations that are generally similar to or lower than the expected inclination for Eurasia (Figs. 5 and 6), but are somewhat steeper than those compiled from the South China Block. The few sites of Wang and Yang (2007) and Tong et al. (2013) that are corrected for inclination shallowing provide inclinations that are generally equal, or only a few degrees lower relative to Eurasia (red open circles in Figs. 5 and 6).

4.3. Vertical axis rotations

Paleomagnetic declinations from the South China Block cluster around the GAPWaP in Eurasian coordinates (Figs. 5 and 7), confirming that the South China Block did not experience a significant rotation with respect to Eurasia (< ~5°) since the latest Jurassic. Some Eocene rocks of the South China Block indicate ~10° counterclockwise rotation but these sites are located close to the left-lateral Xianshuihe-Xiaojiang fault and probably recorded local strike-slip-related rotations (Fig. 3). Most declinations in the Indochina Block are positive (~10–80°, Fig. 6), and their values vary from block to block (Fig. 6), which is much clearer in the GAPWaPs (Fig. 7). The Jurassic to Cretaceous paleomagnetic declinations exhibit uniformly a ~15° clockwise rotation for the Southern Indochina (Fig. 4e), ~40° in the Southern Simao terrane (Fig. 4d) and ~60–80° in the Northern Simao terrane (Fig. 4c), and ~40° in the Lanping terrane in the northwest (Fig. 4b). An important implication of this pattern is that deformation of the Indochina and Sibumasu blocks in the region of the southeast margin of the Tibetan Plateau can be approximated by quasi-rigid rotating blocks separated by (transpressive) strike-slip faults. The Cenozoic paleomagnetic data from the Northern Simao terrane suggest a rapid rotation between Eocene and Middle Miocene (Figs. 6 and 7). The paleomagnetic declinations of Chuandian terrane show systematic decrease from ~40° to 0° from southwest to the northeast close to the Xianshuihe-Xiaojiang fault (Fig. 4a). The paleomagnetic declinations in the Sibumasu Block change gradually from clockwise rotation (~90°) in the north of Tengchong area to counterclockwise rotation in the south-central, and to clockwise rotation (20°) again in the southern part (Fig. 4f). The variation trend generally mimics the sinuous shaped mountain belt in the western margin of Sibumasu Block, suggesting that the west boundary of the Sibumasu Block was originally a straight structure, but evolved into a sinusoidal-shaped structure in the Cen...
ozoic due to internal rotational deformation (Wang and Burchfiel, 1997; Yamashita et al., 2011). Only small declinations (~0–10°) are present along the Ailao Shan-Red River fault suggesting only minor drag folding may have occurred here (Fig. 4b and e). Other clusters of small to negative declinations can be observed along the Xianshuihe-Xiaojiang fault in the Chuanbian Terrane and along Gaoligong fault in the Sibumasu Block (Fig. 4a and f).

5. Discussion

5.1. Inclination shallowing and paleolatitude interpretation

An important observation of the compiled paleomagnetic data is that paleomagnetism provides no solid basis to infer significant, paleomagnetically resolvable southward motion of the Indochina Block with respect to Eurasia. In fact, when inclinations are straightforwardly translated into paleolatitudes, the paleomagnetic data from the South China Block would even suggest a >2000 km northward motion with respect to Eurasia, which is in stark contrast to geological evidence. However, because most of the paleomagnetic studies were undertaken on clastic sedimentary rocks, which are notoriously vulnerable to compaction-induced inclination shallowing (e.g., Kodama and Sun, 1992; Kodama, 2012; Gilder et al., 2001; Tan et al., 2003; Tauxe and Kent, 2004; Yan et al., 2005; Huang et al., 2013; Li et al., 2013a, b), this apparent northward motion is probably an artifact of such compaction. This conclusion is in line with the few inclinations derived from volcanics-based data from the South China Block that are in good agreement with the expected inclination from Eurasia (Chan, 1991; Wang et al., 2010a; Huang et al., 2012, Fig. 5).

In addition, a few studies applied the E/I method of Tauxe and Kent (2004) to correct the bias of inclination shallowing (Wang and Yang, 2007; Tong et al., 2013, 2015). We also conducted E/I corrections for studies that we have the original data (Zhu et al., 2008; Li et al., 2013a, 2015, 2017). As shown in Table 3, except the results of Tong et al. (2015), which still show a much shallower inclination after correction with respect to Eurasia, the other corrected inclinations are roughly consistent with the Eurasian reference frame (Figs. 5 and 6). These results suggest that the lower than expected inclinations for the

![Fig. 5. The compiled paleomagnetic directions (declinations and inclinations, marked in green for sedimentary data and red for volcanic data), sample averages (in blue), and the computed apparent polar wander path (APWP) by using individual direction averages (in black with light grey envelope of errors) from the South China Block versus age at a reference point of 30°N, 105°E and their comparison with the expected directions from the APWP of Eurasia (Torsvik et al., 2012, marked in blue circles with light blue envelope of errors). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image-url)
Fig. 6. The compiled paleomagnetic directions (declinations and inclinations), sample averages (in blue), and the computed apparent polar wander path (APWP) by using individual direction averages (in black with light grey envelope of errors) from (a) Chuandian terrane, (b) Lanping, (c) Sibumasu, (d) Northern Simao, (e) Southern Simao, and (f) Southern Indochina Blocks versus age and their comparison with the expected directions from the APWP of Eurasia (Torsvik et al., 2012, marked in blue circles with light blue envelope of errors). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Sedimentary rocks is most likely due to compaction-induced inclination shallowing. However, the inferred flattening factors from these studies differ (ranging from 0.4 to 0.8, Table 3), and therefore cannot be used as a firm reference to correct other sites. Paleomagnetic data from the Indochina and Chuandian blocks give somewhat steeper inclinations than those for the South China Block (Fig. 7), which allows for some southward motion of these blocks relative to the South China Block (this is actually most of previous paleomagnetic studies adopted) if compaction is everywhere equal, as required by the motion along the Xianshuie-Xiaojiang and Ailao Shan-Red River faults, but paleomagnetic data, particularly with the uncertainties in amount of inclination shallowing, cannot quantify this motion, which should therefore rely on structural geological arguments. We note that even the largest estimates of displacement along the NW-SE striking Ailao Shan-Red River fault would produce only a few degrees of southward motion relative to the South China Block, which is unresolvable, but permitted by paleomagnetic constraints.
5.2. New reconstructions of Cenozoic deformation of Indochina

5.2.1. A new tool to test kinematic restorations against paleomagnetic data

Paleomagnetic data record motion of geological units relative to the geodynamo, which on geological timescales can be assumed to coincide with the Earth’s spin axis (e.g., Butler, 1992). Paleomagnetic data can be used to quantitatively inform kinematic reconstructions, which describe relative motions between geological units on a sphere using Euler’s theorem. There are, however, an infinite number of Euler rotations that correctly describe paleomagnetic data, and additional structural geological constraints are required to develop kinematic restorations.

We therefore designed an additional tool on the recent open-access, online platform for paleomagnetic analysis Paleomagnetism.org (Koymans et al., 2016) that allows testing of kinematic restorations against paleomagnetic data (see tutorial in the Supplementary Information 2). This tool allows to rotate the GAPWaP (whereby we use Torsvik et al. (2012)’s version) into the coordinates of a reconstructed block if the Euler poles of this block are provided in 10 Myr intervals relative to South Africa.
Table 2
Mean paleomagnetic poles of South China, Southern Indochina, Southern Simao and Northern Simao blocks computed on available data by average sites and average individual sample directions.

<table>
<thead>
<tr>
<th>South China APWP-averaging sites</th>
<th>Southern Indochina APWP-averaging sites</th>
<th>Northern Simao APWP-averaging sites</th>
<th>Southern Simao APWP-averaging sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Ma) n Plat (°) Plong (°) A95 (°)</td>
<td>Age (Ma) n Plat (°) Plong (°) A95 (°)</td>
<td>Age (Ma) n Plat (°) Plong (°) A95 (°)</td>
<td>Age (Ma) n Plat (°) Plong (°) A95 (°)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>40 4 84.4 278.0 7.8</td>
<td>90 4 65.1 171.8 10.4</td>
<td>10 3 72.7 194.8 16.4</td>
<td>40 2 47.8 197.1 8.2</td>
</tr>
<tr>
<td>50 5 84.1 265.0 6.3</td>
<td>120 3 60.5 166.9 6.1</td>
<td>20 6 61.2 192.8 12.1</td>
<td>110 2 36.5 177.7 31.7</td>
</tr>
<tr>
<td>60 5 79.9 260.1 8.8</td>
<td>130 8 59.3 166.4 6.8</td>
<td>30 5 32.7 182.6 26.6</td>
<td>120 4 47.5 183.8 12.3</td>
</tr>
<tr>
<td>70 6 81.1 257.3 8.3</td>
<td>140 5 58.6 166.1 12.1</td>
<td>40 4 13.6 171.6 14.2</td>
<td>130 5 51.4 186.8 12.4</td>
</tr>
<tr>
<td>80 16 78.5 232.2 5.7</td>
<td>150 2 56.6 173.3 25.9</td>
<td>50 2 23.9 169.1 18.9</td>
<td></td>
</tr>
<tr>
<td>90 14 76.2 228.8 6.2</td>
<td>180 4 58.3 173.3 7.9</td>
<td>80 6 26.1 173.7 9.9</td>
<td></td>
</tr>
<tr>
<td>100 5 79.9 232.4 10.9</td>
<td>190 3 54.9 172.0 3.7</td>
<td>100 6 35.1 174.1 8.3</td>
<td></td>
</tr>
<tr>
<td>110 10 79.4 227.9 7.9</td>
<td></td>
<td>110 8 25.8 171.7 14.3</td>
<td></td>
</tr>
<tr>
<td>120 18 79.2 218.7 5.0</td>
<td></td>
<td>120 4 11.2 171.5 23.9</td>
<td></td>
</tr>
<tr>
<td>130 10 79.5 219.8 6.2</td>
<td></td>
<td>130 2 23.8 177.1 37.6</td>
<td></td>
</tr>
<tr>
<td>150 5 66.7 228.8 10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 7 73.6 240.0 13.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 2 77.9 339.3 34.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 5 81.1 302.3 10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>South China APWP-averaging samples</th>
<th>Southern Indochina APWP-averaging samples</th>
<th>Northern Simao APWP-averaging samples</th>
<th>Southern Simao APWP-averaging samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Ma) n Plat (°) Plong (°) A95 (°)</td>
<td>Age (Ma) n Plat (°) Plong (°) A95 (°)</td>
<td>Age (Ma) n Plat (°) Plong (°) A95 (°)</td>
<td>Age (Ma) n Plat (°) Plong (°) A95 (°)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>40 306 81.0 285.1 1.7</td>
<td>90 592 66.9 183.5 1.4</td>
<td>10 342 75.8 208.2 1.7</td>
<td>30 194 47.9 199.8 2.6</td>
</tr>
<tr>
<td>50 453 74.0 266.1 1.7</td>
<td>120 243 62.8 175.3 1.7</td>
<td>20 1531 75.2 192.2 1.0</td>
<td>40 222 47.9 199.0 2.3</td>
</tr>
<tr>
<td>60 453 74.0 266.1 1.7</td>
<td>130 562 60.6 177.6 1.3</td>
<td>30 1240 48.1 189.8 1.1</td>
<td>50 29 47.7 194.2 4.0</td>
</tr>
<tr>
<td>70 456 74.7 257.7 1.7</td>
<td>140 320 59.1 179.4 2.0</td>
<td>40 109 17.2 173.6 3.1</td>
<td>60 31 43.1 188.7 4.3</td>
</tr>
<tr>
<td>80 1623 78.8 243.3 0.9</td>
<td>150 129 60.2 179.5 2.3</td>
<td>50 59 25.5 172.3 2.7</td>
<td>80 60 59.0 195.2 2.8</td>
</tr>
<tr>
<td>90 1724 77.8 235.3 0.8</td>
<td>170 36 68.5 189.4 5.6</td>
<td>80 666 22.9 172.3 1.3</td>
<td>110 89 34.5 179.2 3.6</td>
</tr>
<tr>
<td>100 393 76.6 229.1 1.8</td>
<td>180 225 58.7 180.2 1.8</td>
<td>100 474 36.9 174.5 1.5</td>
<td>120 418 46.2 181.6 2.1</td>
</tr>
<tr>
<td>110 1058 79.2 250.4 1.1</td>
<td>190 220 56.9 178.9 1.9</td>
<td>110 392 33.4 174.3 1.7</td>
<td>130 535 52.7 185.8 1.9</td>
</tr>
<tr>
<td>120 1882 78.5 238.8 0.8</td>
<td></td>
<td>120 126 9.3 167.5 3.3</td>
<td></td>
</tr>
<tr>
<td>130 952 77.5 231.1 1.1</td>
<td></td>
<td>130 71 21.9 169.8 3.1</td>
<td></td>
</tr>
<tr>
<td>150 409 65.5 225.8 1.8</td>
<td></td>
<td>170 51 13.7 174.0 1.8</td>
<td></td>
</tr>
<tr>
<td>160 572 72.6 236.1 1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 177 79.4 330.5 2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The apparent polar wander paths were calculated by a moving average at 10 m.y. intervals with a sliding window of 20 m.y. n: number of sites or individual directions used to calculate the mean; Plat/Plong: latitude/longitude of the mean paleopole. A95 is the radius of a cone around a mean that contains the true mean direction with 95% probability. Reference point: 30.66°N, 104.06°E for South China Block, 23.5°N, 100.7°E for Southern Simao and Northern Simao, and 16°N, 104°E for Southern Indochina.
We have used this tool to test existing reconstructions of Indochina extrusion, and to develop an updated kinematic restoration of rotation and extrusion of Indochina. To this end, we reconstruct the blocks we identified based on differential rotations (Fig. 8) first relative to the South China Block, using GPlates free plate reconstruction software (Gplates.org, Boyden et al., 2011). Small-scale motions of South China relative to Eurasia for the Neogene are reconstructed following Replumaz and Tapponnier (2003) and van Hinsbergen et al. (2011a).

![Expected Declination Graph](image)

![Expected Inclination Graph](image)

Fig. 7. A comparison of the computed APWPs of each sub-terrane using individual direction averages and the APWP of Eurasia (Torsvik et al., 2012). The declinations clearly show differential block rotations for each sub-terrane with respect to Eurasia, while the inclinations are consistently lower than those of Eurasia.

Table 3
Summary of the paleomagnetic data and their E/I correction results.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Lat</th>
<th>Long</th>
<th>Age</th>
<th>Dec</th>
<th>Inc</th>
<th>a95</th>
<th>n</th>
<th>Inc(exp) ± ΔI</th>
<th>Inc(E/I)</th>
<th>95% range</th>
<th>f</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jishui*</td>
<td>27.7</td>
<td>115.1</td>
<td>K2</td>
<td>355.7</td>
<td>34.8</td>
<td>6.3</td>
<td>90</td>
<td>50.9 ± 3.4</td>
<td>48.2</td>
<td>40–57</td>
<td>0.6</td>
<td>Wang and Yang (2007)</td>
</tr>
<tr>
<td>Ganzhou*</td>
<td>25.9</td>
<td>114.9</td>
<td>K2</td>
<td>15.6</td>
<td>35.6</td>
<td>5.5</td>
<td>114</td>
<td>49.6 ± 3.4</td>
<td>44.4</td>
<td>38–52</td>
<td>0.7</td>
<td>Wang and Yang (2007)</td>
</tr>
<tr>
<td>Mengla*</td>
<td>21.5</td>
<td>101.5</td>
<td>Eocene</td>
<td>43.1</td>
<td>23.6</td>
<td>5.1</td>
<td>215</td>
<td>44.5 ± 3.1</td>
<td>44.1</td>
<td>38.3–49.3</td>
<td>0.4</td>
<td>Tong et al. (2013)</td>
</tr>
<tr>
<td>Jianchuan*</td>
<td>26.5</td>
<td>99.4</td>
<td>Oligocene</td>
<td>20.9</td>
<td>31.3</td>
<td>7.7</td>
<td>70</td>
<td>50.3 ± 3</td>
<td>33.9</td>
<td>28.3–43.2</td>
<td>0.8</td>
<td>Tong et al. (2015)</td>
</tr>
<tr>
<td>Jingpn*</td>
<td>23.5</td>
<td>100.7</td>
<td>Miocene</td>
<td>13.4</td>
<td>30.5</td>
<td>3.3</td>
<td>108</td>
<td>45.4 ± 2.9</td>
<td>46</td>
<td>39–58.4</td>
<td>0.6</td>
<td>Li et al. (2017)</td>
</tr>
<tr>
<td>Xiaolongtan*</td>
<td>23.8</td>
<td>103.2</td>
<td>10–13 Ma</td>
<td>359</td>
<td>38.7</td>
<td>2.3</td>
<td>204</td>
<td>44.3 ± 2</td>
<td>49.5</td>
<td>41.6–57.7</td>
<td>0.7</td>
<td>Li et al. (2015)</td>
</tr>
<tr>
<td>Dali*</td>
<td>26.3</td>
<td>100</td>
<td>1.8–7.6 Ma</td>
<td>10</td>
<td>28.7</td>
<td>1.6</td>
<td>669</td>
<td>47.2 ± 2</td>
<td>44</td>
<td>40.5–47.5</td>
<td>0.6</td>
<td>Li et al. (2013a, b)</td>
</tr>
<tr>
<td>Yuanmou*</td>
<td>25.7</td>
<td>101.9</td>
<td>4.3–4.9 Ma</td>
<td>11.5</td>
<td>31.6</td>
<td>2.5</td>
<td>212</td>
<td>46.6 ± 2</td>
<td>47.7</td>
<td>40.5–54.1</td>
<td>0.6</td>
<td>Zhu et al. (2008)</td>
</tr>
<tr>
<td>Yuanmou*</td>
<td>25.7</td>
<td>101.9</td>
<td>2.6–4.3</td>
<td>1.3</td>
<td>26.2</td>
<td>2.3</td>
<td>219</td>
<td>46.6 ± 2</td>
<td>42.6</td>
<td>37.1–47.5</td>
<td>0.5</td>
<td>Zhu et al. (2008)</td>
</tr>
<tr>
<td>Yuanmou*</td>
<td>25.7</td>
<td>101.9</td>
<td>1.4–2.6</td>
<td>–</td>
<td>25.6</td>
<td>1.8</td>
<td>515</td>
<td>46.6 ± 2</td>
<td>44.6</td>
<td>41–48.2</td>
<td>0.4</td>
<td>Zhu et al. (2008)</td>
</tr>
</tbody>
</table>

Lat/Long: latitude/longitude of the sample locality; K2: late Cretaceous; Dec/Inc/a95: declination/inclination and the 95% cone of confidence (reported by original authors); n: number of samples that used for E/I correction; Inc(exp) ± ΔI: the expected inclination from the Eurasia pole (Torsvik et al., 2012) and attendant confidence limits; Inc(E/I): the inclination after E/I correction; f: flattening factor; * and # represent the E/I results from literature and newly calculated in this study, respectively.
Eurasia is reconstructed relative to South Africa using Euler rotations as detailed in Seton et al. (2012), updated with Neogene North Atlantic reconstructions of DeMets et al. (2015). The NW Indochina reconstruction is informed by structural constraints, and assumptions, as detailed below, and rotations were iteratively improved to become consistent with the paleomagnetic data reviewed above within those structural constraints.

5.2.2. Paleomagnetic tests of existing reconstructions

In the past few decades, contrasting reconstructions were proposed based on selected paleomagnetic as well as structural geological data. We will briefly show how these reconstructions compare with the paleomagnetic data compiled in our study of stable, Southern Indochina, after which we propose an improved restoration that attempts to reconcile structural and paleomagnetic data.

Lee and Lawver (1995) inferred ~500 km sinistral motion on the Ailao Shan-Red River (Fig. 9a) between 44 and 20 Ma, based on estimates by Wu et al. (1989) and Tapponnier et al. (1990) on the Ailao Shan metamorphic belt. They inferred that from 15 Ma onward the Ailao Shan-Red River fault accommodated a minor dextral displacement, based on inverted structures in the Pearl River Mouth Basin and the Beibu Gulf (Wang et al., 1989). Because they treated Indochina along the entire length of the Ailao Shan-Red River fault as a rigid block—an assumption made in most reconstructions, the predicted displacement along the southeastern end of the Red River fault is considerably larger than the estimated 250 km (Wang and Burchfiel, 1997; Fyhn et al., 2009), but the latter estimates were not yet available when Lee and Lawver published their model. The model predicted ~18° clockwise rotation of Indochina relative to South China from 44 Ma to present day, reasonably consistent with the ~15° clockwise rotation of Southern Indochina observed from paleomagnetic data, as also seen in the predicted declinations using the Euler rotations that we estimated from their reconstruction computed relative to Africa (Fig. 10a).

Hall (2002) loosely inferred that Indochina may have undergone net NW-SE shortening in the western part of the block during extrusion, to account for the difference in sinistral displacement of 700 ± 200 km estimated for the northwestern part (Leloup et al., 1995) and 250 km for the southeastern part (Fig. 9c, Wang and Burchfiel, 1997) of the Ailao Shan-Red River fault. In Hall’s (2002) model, E-W shortening in the western part of Indochina started at 32 Ma, and sinistral displacement along the Ailao Shan-Red River fault occurred at 32–16 Ma. From 15 Ma, there is ~50 km dextral displacement along the Ailao Shan-Red River fault. The Euler rotations of the Hall (2002) model predict a 3° clockwise rotation relative to South China, smaller than predicted by paleomagnetic data (Fig. 10a).

Replumaz and Tapponnier (2003) considered Indochina as a rigid block, and assumed a displacement of 745 km along the Ailao Shan-Red River fault at 30–15 Ma following the estimates of Leloup et al. (1995), Fig. 9b). From 5 Ma onwards they inferred a dextral displacement of 30 km (Replumaz et al., 2001). Their model predicts a 35° clockwise rotation from 40 Ma to present day, consistent with paleomagnetic data from Southern Simao, but much more than that of the Southern Indochina Block (Fig. 10a).

Royden et al. (2008) inferred a ~600 km sinistral motion on the Ailao Shan-Red River fault at the eastern part of the Vietnam block (Southern Indochina, Fig. 9d), which they considered as a rigid block contiguous with the rest of Indochina. They did not elaborate on how to reconcile this estimate with the 250 km sinistral displacement estimate by Wang and Burchfiel (1997). The western part of Indochina (their “Laping-Simao unit”) is considered to have suffered major deformation and shortening after India-Asia collision and during Indochina extrusion, and therefore displacement along the northwestern section of the Ailao Shan-Red River fault may be even larger than ~600 km. The model predicts a 10° clockwise rotation of Indochina relative to the South China Block at 50–20 Ma, in reasonable agreement with paleomagnetic data from Southern Indochina (Fig. 10a).

Fig. 8. Reconstruction of southeast margin of the Tibetan Plateau in a South China-fixed reference frame at (a) 50 Ma and (b) 0 Ma. The inferred rotation and displacement along the Ailao Shan-Red River fault (ASRR) are marked in Fig. 8a. The grey areas denote the shortening during the Cenozoic extrusion and rotation of Indochina.
Fig. 9. Previous tectonic reconstructions of Indochina (A) Lee and Lawver (1995), (B) Replumaz and Tapponnier (2003), (C) Hall (2002), (D) Royden et al. (2008) that predicted different rotations of Indochina and displacements along the Ailao Shan-Red River fault. The outline of West Burma in Fig. 9(B) is following Hall et al. (2008). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison of the predicted rotations by (A) previous reconstructions (Lee and Lawver, 1995; Hall, 2002; Replumaz and Tapponnier, 2003; Royden et al., 2008; van Hinsbergen et al., 2011a), (B) our reconstruction versus available paleomagnetic data. Note that the predicted rotations of different blocks by our reconstruction are consistent with the measured paleomagnetic data.
van Hinsbergen et al. (2011a) noticed different sinistral displacement estimates along the Ailao Shan-Red River fault of 250 km between 30 and 20 Ma (Searle, 2006; Hall et al., 2008; Fyhn et al., 2009) and ~700 km between 30 and 15 Ma (Tapponnier et al., 1982; Leloup et al., 1995), but struggled to reconcile how these estimates could be consistent with each other, because they considered Indochina as a rigid block. They adopted the smaller displacement estimate of 250 km between 30 and 20 Ma (Searle, 2006; Hall et al., 2008; Fyhn et al., 2009), followed by a 40 km dextral displacement from 8 Ma onwards, based on estimates by Fyhn et al. (2009), Replumaz et al. (2001), and Schoenbohm et al. (2006a). Their model predicted a 15° clockwise rotation of Indochina relative to the South China Block, consistent with paleomagnetic data (Fig. 10a).

In conclusion, most reconstructions assume rigidity of the Indochina Block, and fit the estimated amount of rotation of the Southern Indochina Block reasonably well. Even the high end of the predicted rotations of Replumaz and Tapponnier (2003), however, fails to predict major rotations and rotation differences recorded by paleomagnetic data in northwestern Indochina towards the SE margin of the Tibetan Plateau. In addition, current reconstructions tend to assume either the large or small end-member estimate for the Ailao Shan-Red River fault displacement, but do not reconcile these estimates. In the discussion below, we attempt a first-order reconstruction of the Indochina region that takes these rotation differences into account, and tests whether this may reconcile the different estimates of Ailao Shan-Red River fault displacement.

5.2.3. New reconstruction of Indochina deformation

Our new reconstruction aims to reconcile the paleomagnetic rotations with known faults in NW Indochina and estimates displacements of the NW Indochina blocks relative to the stable Southern Indochina domain that forms the stable, undeformed part of Southern Indochina.

The main reason that deformation within NW Indochina was previously not reconstructed in any detail is that little is known about Paleogene fault displacements and magnitude of deformation in this area. Our reconstruction is admittedly oversimplified, in that we assume that the paleomagnetically coherently rotating domains identified above are rigid blocks. The physiography and known geology of these blocks clearly indicate that many of them are internally intensely folded and thrusted instead, and our assumption of block rigidity makes that the displacements that we estimate along faults that we assume as block boundaries are much higher than the currently available estimates. This discrepancy is likely at least in part explained by internal deformation of the blocks—a lateral variation of shortening within a region may also lead to coherent vertical axis rotations. On the other hand, the age and displacement of faults in NW Indochina are based on geomorphology, river bends across the faults, and fault bounded basins, accurate age constraints on these faults remain scarce. Therefore, the actual timing and displacement along these faults may actually much older and larger than currently thought. For example, the Dien Bien Phu fault was previously thought to begin at 5 Ma (Lai et al., 2012), however, recent K-Ar age data on authigenic illite from the fault gouge samples indicates that the Dien Bien Phu fault began as early as Cretaceous and reactivated in the Oligocene (29–26 Ma, Bui et al., 2017).

Our reconstruction should be regarded as an attempt to quantify the horizontal motions accommodated within Indochina that caused the paleomagnetically constrained vertical axis rotations. With these simplifications in mind, we built our reconstruction of block rotations, and iteratively improved the reconstruction to become consistent with paleomagnetic data using the methodology outlined in Section 5.1 (Fig. 10b). This reconstruction assumes that the southern, stable Indochina Block underwent 250 km of sinistral displacement along the Ailao Shan-Red River fault relative to South China using the reconstruction of van Hinsbergen et al. (2011a) as basis, who followed estimates of Fyhn et al. (2009). We tested how much displacement was accommodated along the Ailao Shan-Red River fault in the northwest if we assume that this fault was a pure strike-slip fault, and all NW Indochina blocks moved along this fault while rotating. Euler poles that describe the block motions are provided in Supplementary Information 3.

The NW Indochina-SE Tibetan Plateau margin is cut by a series of major Cenozoic faults that are incorporated in our reconstruction. The Xianshuise-Xiaojiang fault separates Chuanbian from South China and accommodated 78–100 km sinistral displacement from 13 Ma onwards (Roger et al., 1995; Zhang et al., 2004; Wang et al., 2009; Li et al., 2015). We infer that this fault accommodated 15° clockwise rotation of Chuanbian relative to the South China Block (Fig. 8) and adjust the reconstruction of Tibetan tectonics of van Hinsbergen et al. (2011a) to accommodate this rotation.

In the northwest of Indochina, we defined three terranes, Southern Simao, Northern Simao and Lanping, which are based on coherence in paleomagnetic data, and bounded by known faults (see Section 4.1, Figs. 2 and 4). We define the stable southeastern part of Indochina as the Southern Indochina Terrane. The Dien Bien Phu fault separates Southern Simao from the Southern Indochina (Lai et al., 2012). We infer 80 km rotation-related convergence and 175 km left-lateral slip between South Simao and Indochina along this fault at 50–17 Ma to accommodate 35° CW rotation relative to Indochina (Fig. 8). The Lancang fault separates Southern Simao from Northern Simao (Wang and Burchfiel, 1997; Wang et al., 2014). We infer 215 km rotation-related convergence between Southern Simao and Northern Simao along this fault at 50–20 Ma, to accommodate 50° CW rotation relative to Indochina. This is consistent with most available paleomagnetic data, except for the mid-Cretaceous (Fig. 10b). Mid-Cretaceous deformation is documented in Tibet (van Hinsbergen et al., 2011a), but is not reconstructed here. The Nanting River fault separates the Northern Simao from Lanping (Wang and Burchfiel, 1997; Lacassin et al., 1998, Fig. 8). Accommodating 50° difference in rotation between the Northern Simao and Lanping would require a 360 km sinistral motion along these faults if it had accommodated the entire rotation (but see the remarks on our assumptions above).

Restoring these block rotations culminates in a net NW-SE shortening in NW Indochina of as much as ~350 km. As a result, the assumption of 250 km of left-lateral slip along the Ailao Shan-Red River fault between the Southern Indochina Block and South China as suggested by Wang and Burchfiel (1997) and Fyhn et al. (2009) would result in a ~600 km sinistral displacement along this fault in northwestern Indochina (Fig. 8), consistent with the estimates of Leloup et al. (1995) and Chung et al. (1997). The rotations of Indochina may thus reconcile the long-standing discussion on the amount of extrusion from eastern Tibet. The large displacement along the northwestern part of the Ailao Shan-Red River fault requires greater shortening in northwestern Indochina, which is supported by previous geological study (Wang and Burchfiel, 1997).

Our first-order kinematic reconstruction incorporating the paleomagnetic results from the SE margin of the Tibetan Plateau and NW Indochina suggests that extrusion and shortening in the eastern Tibetan Plateau was more important than implied in the restoration of van Hinsbergen et al. (2011a). Our study suggests that their reconstruction may require an update to accommodate the larger amount of Indochina extrusion.

6. Conclusions

In this study, we reviewed all available paleomagnetic data from Indochina and South China blocks since Jurassic, and built a new reconstruction of Indochina deformation in Cenozoic based on the paleomagnetic data and geological observations. Our compilation shows that the extruding Indochina domain was not a rigid block, but that it contained major rotating blocks in particularly its northwestern parts. To facilitate the quantitative testing of kinematic restorations of block motions against paleomagnetic data, we provide a new tool on
the online paleomagnetic analysis platform Paleomagnetism.org that allows the prediction of the Global Apparent Polar Wander Path in the coordinates of any restored block, which can then be compared to paleomagnetic measurements from that block. Restoring the paleomagnetically constrained rotations of these blocks then shows that the northwestern parts of the Indochina domain extruded ~ 350 km farther to the southeast than the southeastern, stable Indochina Block. Assuming a ~250 km displacement of the Southern Indochina Block relative to South China along the Ailao Shan-Red River fault, as suggested by geological and geophysical studies, would yield ~600 km of extrusion of Indochina-related blocks from eastern Tibet, consistent with geological estimates from that region. Our reconstruction therefore provides the first reconciliation between paleomagnetic data and geological evidence from the Indochina Block. Contrary to earlier conclusions, we also find that paleomagnetic inclinations are inconsistent with a paleomagnetically significant southeastward motion of Indochina. Calculating paleolatitudes from the compiled inclinations would, when taken at face value, instead require major northward motions of Indochina and South China relative to Eurasia, which is in stark contrast with structural geological data. However, where inclination shallowing is correction for, inclinations coincide with those from Eurasia. We therefore suggest that these apparent motions are artifacts of compaction-induced inclination shallowing of the red beds from which most of the paleomagnetic data were derived rather than tectonic motions.

Acknowledgements

Robert Hall is thanked for sharing his Euler poles of Indochina. We are grateful to reviewers of Robert Hall and Ken Kodama who provided helpful comments. Financial assistance was provided by the National Natural Science Foundation of China grant 41404056 and the State Key Laboratory of Lithospheric Evolution grant 11431780. ELA and DJJvH were funded through ERC starting grant 306810 (SINK) and NWO VIDI grant 864.11.004. We thank Boris Gesbert for his help in building the paleomagnetic database.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.earscirev.2017.05.007.

References

controversy and reconciliation. Geology 27 (2), 123–126.


