
Kinematics of Late Cretaceous subduction initiation
in the Neo-Tethys Ocean reconstructed from
ophiolites of Turkey, Cyprus, and Syria
Marco Maffione1,2 , Douwe J. J. van Hinsbergen1, Giovanni I. N. O. de Gelder1,3,
Freek C. van der Goes1, and Antony Morris4

1Department of Earth Sciences, Utrecht University, Utrecht, Netherlands, 2School of Geography, Earth and Environmental
Sciences, University of Birmingham, Birmingham, UK, 3Institut de Physique du Globe de Paris, Université Paris Diderot, Paris,
France, 4School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, UK

Abstract Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet
both the kinematics and geodynamics governing this process remain enigmatic. A major subduction
initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and
Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at
suprasubduction spreading centers) were generated during this subduction event and are today distributed
in the eastern Mediterranean region along three ~E-W trending ophiolitic belts. Several models have been
proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan
subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of
Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke
complexes. Our results show that ~NNE-SSW subduction zones were formed within the Neo-Tethys during
the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of
~NNE-SSW and ~WNW-ESE segments. We infer that this subduction system developed within old (Triassic?)
lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge
formed during Gondwana fragmentation would have already been subducted at the Pontides subduction
zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous
Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception
within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone
ophiolites in the absence of nearby spreading ridges.

Plain Language Summary The inception of new subduction zones is one of the most critical and at
the same time still unclear processes of the solid earth cycle. A major subduction initiation event started in
the Late Cretaceous (~95 Ma) in the vast Neo-Tethys Ocean separating Gondwana and Eurasia landmasses.
Several contrasting hypotheses have been put forward to explain the kinematics of such a regional-scale
event, but most of these models invoked an unlikely simultaneous initiation of multiple subduction zones.
Here we present new data from six suprasubduction zone ophiolites of Turkey, Cyprus, and Syria providing
the first quantitative constraints on the kinematics of Late Cretaceous subduction initiation in the Neo-Tethys.
Suprasubduction zone ophiolites are emerged fragments of oceanic crust formed during subduction
inception above the embryonic subduction zone. Paleospreading directions calculated from these ophiolites
indicate that the Neo-Tethyan Cretaceous subduction did not start at ~E-W trending active plate boundaries
(i.e. spreading ridges) as commonly proposed, but rather along ~NNE-SSW trending fracture zones
connected by ~WNW-ESE segments parallel to passive margins, in ancient (Triassic?), cold, and
thick lithosphere.

1. Introduction

Subduction initiation is one of the most critical steps of the plate tectonic cycle and extensively occurred
throughout the Cenozoic [e.g., Gurnis et al., 2004]. However, the causes, dynamics, and kinematics of subduc-
tion initiation are still enigmatic due to the small number of clear modern examples of embryonic subduction
zones, and the long, up to ~10 Myr duration of the process from incipient thrusting to self-sustaining subduc-
tion [e.g., Gurnis et al., 2004; Stern et al., 2012; Arculus et al., 2015]. Because of this, suprasubduction zone (SSZ)
ophiolites have become widely used to study subduction initiation [Stern et al., 2012]. SSZ ophiolites are
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dismembered fragments of oceanic lithosphere formed at suprasubduction spreading centers, which are
currently exposed above sea level [e.g., Dewey, 1976; Coleman, 1981; Casey and Dewey, 1984; Maffione
et al., 2015a].

Formation of new subduction zones commonly occurs in oceanic basins along preexisting lithospheric
discontinuities, i.e., transform faults or (oceanic detachment faults along) spreading ridges, which are likely
the mechanically weakest sites in oceanic crust [Toth and Gurnis, 1998; Hall et al., 2003; Maffione et al.,
2015b; van Hinsbergen et al., 2015; Keenan et al., 2016]. Investigating in ophiolites the structures that accom-
modated past subduction inception events is critical to constrain the force balance of subduction systems
(which in turn depends on the rheology of both the lithospheric weakness zones and the upper mantle),
as well as the kinematics and ultimate geological expressions of subduction initiation.

SSZ ophiolites are widespread in the eastern Mediterranean and Middle East region and form thousands of
kilometers long ophiolitic belts running from Serbia to Greece and from Turkey to Oman. These ophiolites
formed within the Neo-Tethys Ocean, a vast oceanic domain with intervening microcontinents separating
Gondwana and Eurasia continents [e.g., Şengör and Yilmaz, 1981], during two major subduction initiation
events in the Middle Jurassic (~170 Ma [Schmid et al., 2008; Robertson, 2012; Bortolotti et al., 2013;
Maffione et al., 2013, 2015b]) and Late Cretaceous (~95–90 Ma [e.g., Searle and Cox, 1999; Robertson,
2002, 2004; Çelik et al., 2006; Chan et al., 2007; Karaoğlan et al., 2013; van Hinsbergen et al., 2016 and
references therein].

The main goal of this study is to reconstruct by using these SSZ ophiolites the initial geometry and subse-
quent kinematic evolution of the subduction system and associated SSZ spreading centers that formed in
the western Neo-Tethys during the Late Cretaceous. The reconstruction of this subduction system will be cri-
tical to constraining (i) the plate boundary configuration in the Late Cretaceous, in particular the number and
geometry of trenches; (ii) how these plate boundaries evolved to produce the present-day distribution of SSZ
ophiolites in the eastern peri-Mediterranean region; and (iii) the nature of the preexisting weakness zones
along which subduction initiated in the western Neo-Tethys. To this end, we calculate the paleospreading
directions of six (plus one reported from a previous study) different suprasubduction magmatic centers that
formed in the Neo-Tethys upon Late Cretaceous subduction initiation, using analysis of the orientations and
paleomagnetic poles in sheeted dykes from various ophiolites of Turkey, Cyprus, and Syria.

2. Geological Setting

The ophiolites forming the focus of this study are at present incorporated in a complexly deformed orogen in
the eastern Mediterranean region (Figure 1). The northern part of this orogen constitutes the Pontide moun-
tain range of northern Turkey that contains deformed Paleozoic to Triassic basement interpreted to derive
from the Sakarya continental block that collided with Eurasia in Triassic to Early Jurassic time [Şengör and
Yilmaz, 1981; Sayıt and Göncüoglu, 2013; Okay et al., 2014; Dokuz et al., 2017]. These units are overlain by a
Mesozoic sedimentary cover, including Jurassic to Cenozoic arc volcanic rocks [e.g., Okay et al., 2013;
Dokuz et al., 2017]. To the north, the Pontides are separated from Eurasia by the Cretaceous-to-Paleogene
Black Sea back-arc basin [Okay et al., 1994;Munteanu et al., 2011; Nikishin et al., 2015; Sosson et al., 2016], while
to the South they are fringed by a belt known as the İzmir-Ankara suture zone. This suture zone contains a
chaotic mélange of serpentinites, deep marine sediments, and ophiolite fragments, which demarcates the
location where the northern branch of the eastern Mediterranean Neo-Tethys subducted northward since
Middle Jurassic time [Şengör and Yilmaz, 1981]. Within the İzmir-Ankara suture zone, a series of ophiolites
with Middle Jurassic crustal ages andmetamorphic soles has been recognized, whose plate kinematic setting
remains debated but that show ages comparable to the ophiolites of the Balkans and Greece [Çelik et al.,
2011; Topuz et al., 2013, Çörtük et al., 2016].

The ophiolites analyzed in this study are distributed south of the İzmir-Ankara suture zone and form the high-
est structural unit of a dominantly continental crust-derived orogen known as the Anatolide-Tauride belt
[e.g., Şengör and Yilmaz, 1981; Okay, 1986; Okay and Whitney, 2010; Plunder et al., 2013, 2016, van
Hinsbergen et al., 2016]. These ophiolites have a SSZ geochemical signature and crustal ages that are consis-
tently clustered around 95–90 Ma (see reviews in, e.g., Robertson [2002],Moix et al. [2008], and van Hinsbergen
et al. [2016]). These ophiolites are underlain by thin and disruptedmetamorphic soles with Ar/Ar cooling ages
that are comparable to those of the ophiolitic crust [van Hinsbergen et al., 2015, 2016].
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Ophiolitic mélanges of the İzmir-Ankara suture zone that structurally overlie, as well as the mélanges that
structurally underlie the Cretaceous ophiolites, contain radiolarian cherts as old as the Early Triassic [Tekin
et al., 2002, 2016; Tekin and Göncüoğlu, 2007]. This indicates that the eastern Mediterranean Neo-Tethys
Ocean had been forming since at least Early Triassic time (~245 Ma), probably when the Sakarya block of
the Pontides separated from Gondwana and drifted toward Eurasia [e.g., Dokuz et al., 2017].

The Anatolide-Tauride belt consists of metamorphosed and nonmetamorphosed continent-derived units
that from structurally high to low positions include the Kırşehir block and Tavşanlı zone, both showing
~85 Ma metamorphic ages, the Afyon zone with ~65 Ma metamorphic ages, and the Tauride fold-thrust belt
(including the Menderes Massif) that underthrust and accreted to the Eurasian margin in Paleogene time (see
review in van Hinsbergen et al. [2016]) (Figure 1). The Kırşehir Block and Tavşanlı zone in the north may have
been separated from the Afyon zone, which formed the promontory of the Tauride continental platform, by
another, few hundred kilometer-wide oceanic basin conceptually known as the Intra-Tauride ocean. The
Upper Cretaceous ophiolites overlying the Taurides are frequently inferred to derive from this Intra-Tauride
ocean basin [e.g., Robertson et al., 2009; Parlak et al., 2013; Barrier and Vrielynck, 2008; Menant et al., 2016].
However, a recent plate kinematic reconstruction [van Hinsbergen et al., 2016] suggested that derivation of
ophiolites from an Intra-Tauride basin is plate kinematically unlikely and not required to explain the orogenic
structure. According to van Hinsbergen et al. [2016], these ophiolites, including those lying on the Lycian
nappes (Lycian ophiolites), on the northern Taurides (Alihoca and Divriği ophiolites), as well as on the meta-
morphosed Afyon, Tavşanlı, and Kırşehir units (e.g., the Sarıkaraman ophiolite), may be part of a single ocea-
nic thrust sheet that rooted in the Izmir-Ankara suture and was emplaced from the Late Cretaceous until the
Eocene onto Gondwana-derived terranes. Themodern, wide areal dispersion of these ophiolites may (at least

Figure 1. Main tectono-stratigraphic domains and tectonic structures of Turkey and surrounding regions, showing the
distribution of the Late Cretaceous Neo-Tethyan ophiolites. DI, Divriği ophiolite; GO, Göksun ophiolite; AH, Alihoca ophio-
lite; SA, Sarıkaraman ophiolite; LY, Lycian ophiolite; AN, Antalya ophiolite; ME, Mersin; PK, Pozantı-Karsantı ophiolite; HA,
Hatay ophiolite; BB, Baer-Bassit ophiolite; TR, Troodos ophiolite; EFZ, Ecemiş fault zone.
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in part) be explained by regional Late Cretaceous to Miocene extension [e.g., Bozkurt and Oberhänsli, 2001;
van Hinsbergen et al., 2010, 2016; Gautier et al., 2008; Lefebvre et al., 2011, 2015].

Along the southwestern coast of Turkey, around the Bay of Antalya, ophiolites and an underlying fold-and-
thrust belt are found, known as the Antalya-Alanya nappes (Figure 1). Structural and stratigraphic evidence
demonstrates that these ophiolites and the underlying fold-and-thrust belt were emplaced northward over
the Tauride platform until latest Cretaceous times, with their frontal thrust being sealed by Eocene sediments
[e.g., Okay and Ozgul, 1984]. The Antalya ophiolite and its dismembered metamorphic sole have the same
~95–90 Ma ages as the rest of the Anatolian ophiolites [e.g., Çelik et al., 2006], but their emplacement direc-
tion clearly shows that they were derived from a separate subduction segment. The Alanya nappes comprise
a continent-derived HP-LT metamorphic complex [Okay and Ozgul, 1984] with ages of ~85–82 Ma, inter-
preted as a far-traveled, deeply underthrust relict of Tauride platform rocks [Cetinkaplan et al., 2016].

Other Upper Cretaceous ophiolites of the southeastern Taurides—including the Göksun ophiolite—are
located to the north of the Bitlis massif and are overlying meta-sedimentary rocks known as the Malatya-
Keban units (Figure 1). Both the ophiolites and the overlying metamorphics are intruded by Campanian
(~85–81 Ma) granitoids [Parlak et al., 2004; Parlak, 2006; Karaoğlan et al., 2016], indicating that this region
was already involved in orogenesis in Late Cretaceous time, well before the Paleogene arrival of the northern
ophiolites on the Taurides.

In the southeastern Taurides along the northern front of undeformed Arabia lies the Bitlis massif (Figure 1).
This, as well as the Arabian continent itself are also overlain by Cretaceous ophiolites, once again with
~95–90 Ma crustal and sole ages [e.g., Parlak et al., 2009]. The Bitlis massif, in addition, underwent Late
Cretaceous HP-LT, eclogite, and blueschist-facies metamorphism, the former dated at 85–82 Ma and cooling
after blueschist metamorphism continuing until ~70 Ma [Oberhänsli et al., 2012, 2014]. The age of HP-LT
metamorphism in the Bitlis massif is thus similar to that in the Alanya nappes and to the granitoid ages of
the southeastern Taurides intruding the Malatya-Keban metamorphics and is likely related to the same
orogenic event [Karaoğlan et al., 2016; Cetinkaplan et al., 2016].

Ophiolites to the south of the Bitlis massif, including the Hatay and Baer-Bassit ophiolites of Turkey and Syria,
respectively, overlie the undeformed Arabian foreland (Figure 1). The emplacement age of these ophiolites is
constrained by Maastrichtian sediments sealing the obduction thrust [Al Riyami and Robertson, 2002;
Kaymakcı et al., 2010]. It is widely perceived that the Troodos ophiolite of Cyprus (Figure 1) forms the
westward continuation of the Hatay and Baer-Bassit ophiolites. The Troodos ophiolite has crustal ages of
92–90 Ma [Mukasa and Ludden, 1987], similar to the ages retrieved from metamorphic sole relics in the
juxtaposed Mamonia Complex [Chan et al., 2007]. The Mamonia Complex is an accretionary prism including
ocean and continental passive margin-derived rocks with ages ranging from Triassic to Early Cretaceous [e.g.,
Bailey et al., 2000]. The juxtaposition of the Troodos ophiolite with the Mamonia Complex has been con-
strained at the latest Cretaceous based on uppermost Maastrichtian mass flow deposits sealing the contact
between the two units [Swarbrick and Naylor, 1980]. The origin and provenance of the Mamonia Complex
mélange are, however, still debated. In the Miocene fold-and-thrust belt in northern Cyprus, known as the
Kyrenia Range, continental passive margin sediments are found that underwent low-grade metamorphism
in the Late Cretaceous, prior to extensional exhumation to the seafloor in latest Cretaceous time [e.g.,
Robertson et al., 2012]. Because of similarities in the ophiolite structure as well as a Late Cretaceous major
counterclockwise rotation phase demonstrated paleomagnetically [e.g., Clube and Robertson, 1986], the
Troodos ophiolite is widely considered to have been part of a microplate together with the Baer-Bassit and
Hatay ophiolites [e.g., Morris et al., 2002, 2006; Inwood et al., 2009a]. Contrary to the Hatay and Baer-Bassit
ophiolites, however, Cyprus is at present not part of the African-Arabian plate but is located in the fore arc
of the eastern Mediterranean subduction zone (Figure 1).

3. Sampling and Methods

In this study, we present new paleomagnetic data from the sheeted dyke complexes of three different ophio-
lites in central Turkey: the Divriği, Alihoca, and Göksun ophiolites (Figure 1 and Table 1). All sampled dykes
have a doleritic composition and magmatic texture. At all sampled sites, one core per dyke was drilled,
and the orientations of at least 10 dykes were measured to calculate a site mean dyke direction. Based on
these new data, we determined the tectonic rotation parameters and the initial (predeformation) dyke
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orientations from which we infer the paleospreading directions. Furthermore, paleospreading directions
were also determined for the Troodos (Cyprus), Hatay (Turkey), and Baer-Bassit (Syria) ophiolites based on
a reinterpretation of published paleomagnetic data.

3.1. Studied Ophiolites
3.1.1. Divriği Ophiolite
The Divriği ophiolite rests on the northern part of the Lower Carboniferous-Campanian Tauride carbonate
platform rocks of east-central Anatolia (Figure 1). The ophiolite is composed of mantle ultramafics and gab-
broic cumulates, isotropic gabbro, and sheeted dykes overlain by a Campanian-Maastrichtian volcano-
sedimentary sequence [Yilmaz and Yilmaz, 2004; Parlak et al., 2006]. U-Pb zircon ages of 88.8 ± 2.5 Ma from
the cumulate gabbros are comparable with 40Ar-39Ar ages of the underlying metamorphic sole (87–89 Ma
[Parlak et al., 2013]) and support formation of the ophiolite during subduction initiation in a fore-arc setting
[Parlak et al., 2013]. The ophiolite and metamorphic sole overlie the Yeşiltaşyayala mélange, which includes
fragments of metamorphic sole rocks incorporated into a serpentinized matrix [Uçurum, 2000]. A number of
discrete, nonmetamorphic, alkaline dykes with 40Ar-39Ar ages of ~76 Ma [Parlak et al., 2013] crosscut both the
ophiolite and the underlying metamorphic sole and are interpreted to have derived from fertile mantle melts
produced before ophiolite emplacement [Parlak et al., 2006]. Finally, A-type granitoids with U-Pb zircon ages
of ~69 Ma [Parlak et al., 2013] intrude both the ophiolite and underlying ophiolitic mélange and are uncon-
formably overlain by Eocene basal conglomerates [Yilmaz et al., 2001]. Field and age relationships indicate an
emplacement age of the Divriği ophiolite onto the northern Taurides of ~65 Ma and younger [Parlak et al.,
2013; Robertson et al., 2013].

A total of 151 paleomagnetic core samples were collected at seven sites (DIV01 to DIV07) distributed
throughout the sheeted dyke complex of the Divriği ophiolite, near the village of Günes (Table 1 and
Figure 2a). Sampled dykes are between 30 and 150 cm thick, frequently show chilled margins on one side
of the dyke, and are steeply dipping approximately to the North.
3.1.2. Alihoca Ophiolite
The Alihoca ophiolite is presently located above the northern side of the Tauride thrust belt, in the foothills of
the Bolkar Mountains (Figure 1). The Alihoca ophiolite displays an ~1500 m thick dismembered ophiolite

Table 1. New Paleomagnetic Results From the Divriği, Alihoca, and Göksun Ophiolites and Recalculated Directions for the Baer-Bassit Ophiolitea

Site Latitude Longitude Strike/Dip δS N N45 D dD I dI k α95 K A95 A95min A95max

Divriği ophiolite
DIV01 39.378528° 37.854573° 295/52 6.4 30 26 330.6 5.1 36.9 7 38.1 4.7 35.7 4.8 3.3 10.5
DIV02 39.378528° 37.854573° 266/66 7.1 40 39 331.5 3.9 36.9 5.3 41.3 3.6 41.3 3.6 2.8 8.2
DIV03 39.378528° 37.854573° 262/67 4.7 14 14 343.2 4.0 35.3 4.0 205.8 2.8 220.1 2.7 4.2 15.6
DIV06 39.378528° 37.854573° 281/71 6.8 31 30 349.7 5.7 24.4 9.7 20.6 5.9 23.4 5.6 3.1 9.6
Average DIV01/02/03/06 39.378528° 37.854573° 265/64 5.5 115 95 338.0 3.1 33.3 4.5 23.9 3.0 26.0 2.9 1.9 4.7
DIV04 39.366639° 37.859722° 235/84 8.2 6 6 297.7 38.5 79.4 6.9 90.2 7.1 29.4 12.6 5.9 26.5
DIV05 39.369167° 37.860750° 256/70 5.6 6 6 320.4 7.5 46.9 8.0 111.9 6.4 103.1 6.6 5.9 26.5
DIV07 39.244111° 37.777417° 255/60 6.2 24 23 321.0 4.7 6.5 9.2 30.3 5.6 43.2 4.7 3.4 11.4
Alihoca ophiolite
AH 37.511596° 34.821244° 013/89 13.7 26 25 349.5 7.6 57.5 5.5 35.6 4.9 24.8 5.9 3.3 10.8
Göksun ophiolite
GOK01b 38.120732° 36.864106° 237/85 4.0 31 24 000.5 7.4 47.5 7.7 22.1 6.4 21.6 6.5 3.4 11.1
GOK02, GOK03 38.134838° 36.874114° 237/85 4.0 147 145 039.0 1.9 23.0 3.3 34.5 2.0 39.5 1.9 1.6 3.6
Baer-Bassit ophiolitea

North Coast (A) 123/86 7.4 23 23 068.8 5.1 �33.7 7.5 28.2 5.8 39.4 4.9 3.4 11.4
North Coast (B) 118/89 5.0 11 11 108.2 5.1 �34.6 7.3 63.1 5.8 89.8 4.8 4.6 18.1
Bassit Road 329/81 13.3 50 50 024.3 5.0 �88.5 1.8 114.1 1.9 31.0 3.7 2.5 7.0
Quastal Maaf 325/20 5.0 16 16 200.5 3.4 �19.5 6.2 59.2 4.8 120.7 3.4 4.0 14.3

aData recalculated fromMorris et al. [2002] using a parametric sampling of original data. δS is the 95% confidence around themean pole to dyke calculated from
field measurements of at least 10 adjacent dykes at each site. N, total number of processed specimens; N45, number of specimens used for the calculation of the
mean values after filtering with a 45° cutoff [Johnson et al., 2008]. D, dDx, mean declination and associated error; I, dIx, mean inclination and associated error; k and
α95, precision parameter and semiangle of the 95% cone of confidence around the computed site mean direction; K and A95, precision parameter and semiangle
of the 95% cone of confidence around the mean virtual geomagnetic pole; A95max and A95min, maximum and minimum value of A95 expected from paleosecular
variation of the geomagnetic field calculated after Deenen et al. [2011].

bDiscarded site due to possible present-day remagnetization.
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pseudostratigraphy, composed of deformed mantle peridotites (harzburgites with minor dunites), layered-
to-isotropic gabbros, sheeted dykes, and a very thin (and locally absent) volcanic sequence. Available ages
from pegmatitic gabbros (92.38 ± 0.48 Ma from U-Pb on zircon [Gürer et al., 2016]), and late stage mafic
dykes cutting (in adjacent localities) the metamorphic sole (90.8 ± 0.8 Ma from hornblende 40Ar/39Ar [Dilek
et al., 1999]), are comparable to ophiolitic crustal ages across Turkey.

The Alihoca ophiolite rests tectonically on an ophiolitic mélange that consists of dolerites, basalts,
radiolarian cherts, and Triassic to Cretaceous limestones within a serpentinite matrix. The mélange is
cut by the Eocene Horoz granitoid [Kadioglu and Dilek, 2010]. The emplacement of the Alihoca ophio-
lite onto the Anatolide-Taurides platform may have occurred as early as the Campanian [Gürer
et al., 2016].

Figure 2. Geological maps of (a) the Divriği ophiolite, modified from Parlak et al. [2006], and (b) the Göksun ophiolite,
modified after Parlak et al. [2004], showing the main lithologies and sampling sites.
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A total of 28 paleomagnetic samples were collected at one site (AH) within the sheeted dyke complex
exposed along the road to Ardicli village (Table 1). Here the sheeted dyke sequence is no thicker than few
hundreds of meters and contains subvertical dykes striking NNE-SSW to N-S, with individual dykes being
30 to 100 cm thick on average.
3.1.3. Göksun Ophiolite
The Göksun ophiolite is located in the southeastern Taurides and is exposed in a tectonic window below the
metamorphic Paleozoic-Mesozoic Malatya-Keban platform (Figure 1). The Göksun ophiolite exposes a well-
preserved and thick sequence composed of a condensed mantle sequence overlain by isotropic-to-layered
gabbro, a sheeted dyke complex, and a thin volcanic sequence [Parlak, 2006]. Pelagic microfossils found
interlayered with the volcanic sequence indicate a minimum Campanian age of the ophiolitic crust
[Perinçek and Kozlu, 1984]. Both the ophiolite and Malatya-Keban platform rocks are intruded by
~88–85 Ma [Parlak, 2006] I-type calc-alkaline granitoids. The current structural relationship with the ophiolite
located below the Malatya metamorphics has led to models whereby the ophiolite accreted below the
Malatya metamorphics [e.g., Parlak, 2006]. This does not explain the metamorphism of the Malatya units;
furthermore, accretion of an ophiolite, which represents a thinned but otherwise full oceanic lithosphere,
to an overriding plate is geodynamically implausible. There is no detailed structural reconstruction of the
eastern Tauride fold-thrust belt, but we assume that the current situation is the result of out-of-sequence
thrusting and that the Göksun ophiolite was obducted onto the Taurides platform in the Late Cretaceous
in the short time span between oceanic crust formation and intrusion of the granitoids.

A total of 178 paleomagnetic samples were collected at three adjacent sites (GOK01, GOK02, and GOK03)
along a continuous 2.3 km long road section south of Esence village exposing sheeted dykes (Table 1 and
Figure 2b). Dykes, along the entire outcrop are steeply dipping to the northwest, are ~100 cm thick on
average and show clear chilled margins mainly on one side of each dyke.
3.1.4. Troodos Ophiolite
The Troodos ophiolite of Cyprus is one of the world’s best preserved and most complete ophiolites [e.g.,
Moores and Vine, 1971; Moores et al., 1984; Robertson and Xenophontos, 1993]. The ophiolitic crust formed
in the Late Cretaceous (U-Pb age of 92–90 Ma [Mukasa and Ludden, 1987]) at a suprasubduction zone spread-
ing center located in a fore-arc position [Pearce and Robinson, 2010]. Troodos is the only ophiolite that has
been shown to preserve a complete transform-fault bounded ridge segment formed in a suprasubduction
zone environment [Moores and Vine, 1971; Simonian and Gass, 1978; Varga and Moores, 1985; Morris and
Maffione, 2016]. The Troodos ophiolite is one of the type localities of the Penrose-type ophiolite pseudostra-
tigraphy and is deformed into a gentle domal pericline [Robertson and Xenophontos, 1993]. In the southwest
of Cyprus, the ophiolite is juxtaposed with a chaotic assemblage of magmatic and sedimentary rocks known
as Mamonia Complex [e.g., Robertson and Xenophontos, 1993]. Juxtaposition of the Troodos ophiolite and the
Mamonia Complex occurred between the latest Campanian and the late Maastrichtian (~73–65 Ma)
[Swarbrick and Naylor, 1980; Bailey et al., 2000].

The sheeted dyke complex is the most extensively exposed unit of the Troodos ophiolite and contains
generally steeply dipping dykes striking around a N-S direction [e.g., Varga and Moores, 1985; Bonhommet
et al., 1988; Allerton and Vine, 1991]. Dyke orientations are more variable at the northern and southern edges
of the ophiolite, where they rotate toward an ~E-W direction approaching fossil transform faults in the north
and south [Bonhommet et al., 1988; Morris and Maffione, 2016]. This change in orientation toward the trans-
form zones is ascribed to local dextral shearing during the magmatic spreading phase [e.g., MacLeod et al.,
1990;Morris et al., 1990, 1998;Morris and Maffione, 2016]. Paleomagnetic data from the ophiolite and its sedi-
mentary cover have demonstrated ~90° of counterclockwise rotation of the ophiolite since its formation
[Clube and Robertson, 1986; Morris et al., 1990], with most of this large rotation (~65°) occurring prior to the
Maastrichtian [Morris et al., 2006]. We will reevaluate the Troodos data in this paper, but this main conclusion
remains standing.
3.1.5. Hatay and Baer-Bassit Ophiolites
The Hatay (or Kızıldağ) and Baer-Bassit ophiolites are part of a larger ophiolitic nappe formed in a suprasub-
duction zone setting [Whitechurch et al., 1984; Lytwyn and Casey, 1993; Parlak et al., 2009] and emplaced south
to southeastward onto the Arabian platform in the late Maastrichtian [Tinkler et al., 1981; Piskin et al., 1986;
Yılmaz, 1993; Al-Riyami and Robertson, 2002; Al-Riyami et al., 2002; Inwood et al., 2009b]. The Hatay ophiolite
in the north represents an ~7 km thick and relatively undeformed slice of oceanic lithosphere showing all
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elements of the Penrose ophiolitic sequence, including harzburgites, gabbros, sheeted dykes, and volcanics
[Delaloye et al., 1980; Al-Riyami and Robertson, 2002]. The sheeted dyke complex is particularly well exposed
along a 4.5 km long continuous section where dykes are subvertical and ~E-W striking [Inwood et al., 2009a].
The Baer-Bassit ophiolite in the South forms the leading edge of the emplaced oceanic sheet. It is intensely
dismembered, yet still contains a fairly complete Penrose pseudostratigraphy. The sheeted dyke complex is
well developed, with dykes steeply dipping and trending mainly NW-SE [Morris et al., 2002]. The volcanic
sequence of the ophiolite is uncomformably covered by upper Maastrichtian-Paleogene marine sediments
[Dilek and Delaloye, 1992; Al-Riyami et al., 2002; Al-Riyami and Robertson, 2002].

U-Pb ages on zircons of ~92 Ma from plagiogranite and cumulate gabbro, and Sm-Nd ages of ~95 Ma from
gabbro have been reported from the Hatay ophiolite [Karaoğlan et al., 2012]. There is no direct age for the
crustal section of the Baer-Bassit ophiolite. 40Ar-39Ar ages on hornblende of 88.9 ± 0.8 Ma from the meta-
morphic sole beneath the Baer-Bassit ophiolite [Chan et al., 2007] are consistent with other metamorphic sole
ages from the Hatay and surrounding ophiolites. Based on these similarities, a Late Cretaceous crustal age for
the Baer-Bassit ophiolite is generally assumed.

3.2. Paleomagnetic Analyses

Standard paleomagnetic cores were collected in 2013 and 2014 with a water-cooled portable rock drill and
oriented in situ with both magnetic and Sun compasses. All field measurements were corrected for the local
magnetic declination (~5°E at the sampled localities; www.ngdc.noaa.gov). Remanence components were
analyzed by using mainly stepwise alternating field (AF) demagnetization treatments (2 to 100 mT), with
~10% of the samples at each site demagnetized thermally (up to 580°C, or until complete demagnetization).
AF demagnetization and simultaneous measurements of remanences were carried out by using a robotized
superconducting (SQUID) cryogenic magnetometer installed at the Paleomagnetic laboratory “Fort
Hoofddijk” at Utrecht University, Netherlands. Thermal demagnetizations were carried out by using a
shielded oven, with the remanence at each step measured with a cryogenic magnetometer.
Demagnetization data were plotted on orthogonal diagrams [Zijderveld, 1967], and remanence components
were isolated via principal component analysis [Kirschvink, 1980] using online software for paleomagnetic
data analysis [www.paleomagnetism.org [Koymans et al., 2016]. Calculated characteristic remanent magneti-
zation components (ChRMs) with maximum angle of deviation [Kirschvink, 1980] larger than 15° were
discarded. Site mean directions were computed by using Fisherian statistics [Fisher, 1953] on virtual geomag-
netic poles (VGPs) correspondent to the isolated ChRMs, and a fixed 45° cutoff to their distribution [Johnson
et al., 2008] was applied. Following the approach of Deenen et al. [2011], VGP scatters at each site (approxi-
mated by the A95 parameter; see Table 1) were used to assess whether paleosecular variation (PSV) of the
geomagnetic field was represented at each site. Underrepresentation of PSV (i.e., A95 < A95min) in magmatic
rocks may indicate either rapid cooling or remagnetization; overrepresentation of PSV (i.e., A95> A95max) indi-
cates significant sources of scatter superimposed on PSV, e.g., due to pervasive deformation at the outcrop
scale or an inefficient preservation of the remanence.

3.3. Rock Magnetism and Petrology

To study the nature of the carriers of magnetization, we have analyzed the thermal variation of magnetic
susceptibility and Curie temperatures in representative samples. Thermal variation of magnetic susceptibility
was measured with an AGICO KLY-3 Kappabridge coupled with a CS3 apparatus during heating-cooling cycles
from room temperature to 700°C. The Curie temperatures were investigated with a horizontal translation Curie
balance [Mullender et al., 1993] during stepwise heating-cooling cycles from room temperature up to 700°C.

Analyses on polished thin sections using an optical microscope were also carried out to identify microstruc-
tures and bulk mineralogical assemblages. The nature and distribution of the ferromagnetic minerals was
assessed by using backscattered electron images and elemental analyses using a JEOL JCM-6000 scanning
electron microscope coupled with an energy-dispersive X-ray (EDX) (Utrecht University).

3.4. Net Tectonic Rotation Analysis

In standard paleomagnetic studies, deformation is decomposed into a tilt and a vertical-axis rotation. To
obtain the vertical-axis rotation component, tilt is first removed by restoring paleo-surfaces back to their
original horizontal position (or vertical in case of dykes). Our analysis of paleo-ridge orientations and spread-
ing directions, however, is based on data from sheeted dykes that are generally assumed to have been
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intruded in a vertical orientation. Simply restoring dykes to a vertical position, however, is insufficient to cor-
rect for the effect of postemplacement tilting because components of tilting around dyke-normal axes pro-
duce a change in the initial dyke strike that cannot be resolved. Net tectonic rotation analysis [Allerton and
Vine, 1987] has been demonstrated to be an effective approach to overcome this problem [Morris et al.,
1990, 1998, 2002; Hurst et al., 1992; Inwood et al., 2009a; Maffione et al., 2015b; Morris and Maffione, 2016;
van Hinsbergen et al., 2016].

Net tectonic rotation analysis calculates the net rotation around an inclined axis that simultaneously brings (i)
the paleo-surface from its original (vertical or horizontal) position to the postdeformation orientation as mea-
sured in the field and (ii) the direction of the geomagnetic field at the time of ophiolite formation (i.e., the
“reference direction”) to the calculated in situ site mean paleomagnetic direction. This reference direction
is directed due north (or south, in a reversed field) and has an inclination that corresponds to the expected
latitude from, e.g., plate tectonic reconstructions, or to the inclination of a tilt corrected paleomagnetic direc-
tion from the ophiolite’s volcano-sedimentary cover. Net tectonic rotation solutions are expressed as the azi-
muth and plunge of the rotation axis, the magnitude and sense of rotation, and the initial orientation of the
paleo-surface. When applied to dykes, up to two sets of net tectonic rotation solutions can be obtained,
depending on whether the dykes can be restored to vertical or not (if they cannot, this may indicate that
the dykes did not intrude vertically). If two solutions are obtained, additional geological constraints should
be considered to choose a preferred solution. Net tectonic rotation parameters from a single solution should
be rejected as they are biased by the selected reference direction (e.g., the initial dyke orientation will always
strike perpendicular to the chosen reference direction). Uncertainties on the reference direction, site mean
direction, and dyke orientation at each site are modeled by using a method devised by Morris et al. [1998],
implemented on www.paleomagnetism.org, with modifications listed in Koymans et al. [2016], who updated
the method to impose no error on the declination of the reference direction, and to use the error on rema-
nence declination and inclination ΔDx and ΔIx, instead of the α95. This results in three input vectors for the
reference direction (mean value plus two at the edge of the error bar) and five for the in situ dyke orientation
and the site mean direction (mean value plus four points along the confidence ellipse). The possible combi-
nations of these vectors generate 75 (5 × 5 × 3) permissible net tectonic rotation solutions at each site.
Combining multiple sites within an ophiolite then leads to a range of potential dyke orientations, which is
expressed as the average plus standard deviation.

Here we use the net tectonic rotation analysis to determine rotation parameters and initial orientations of
sheeted dykes from the Divriği, Göksun, and Alihoca ophiolites based on our new paleomagnetic data, and
on published data from the Troodos [Bonhommet et al., 1988; Morris et al., 1990, 1998, 2002; MacLeod et al.,
1990; Morris and Maffione, 2016], Hatay, and Baer-Bassit [Morris et al., 2002; Inwood et al., 2009a] ophiolites.
In particular, new mean directions were calculated for the Baer-Bassit ophiolite (Table 1) by parametric sam-
pling of site means reported by Morris et al. [2002] and performing the analysis on the resulting directions.

In our analysis, the reference direction has a declination (Dref) = 000°, assuming a normal magnetic polarity
(all ophiolites formed during the Cretaceous Normal Superchron, 126–83 Ma [Gradstein et al., 2012]). This
implies that the net rotation calculated at each site arises from a combination of plate motion and deforma-
tion. The inclination (I) of the reference direction for the Turkish ophiolites was determined from paleolati-
tude estimates based on paleogeographic reconstructions [van Hinsbergen et al., 2016] placed in the
paleomagnetic reference frame of Torsvik et al. [2012]. Uncertainties on the inclination of the reference direc-
tion are related to the reconstructed width of the Neo-Tethys Ocean and the A95 error of the reference global
apparent polar wander path. According to paleogeographic reconstructions, in the Late Cretaceous
(100–90 Ma), the northern branch of the Neo-Tethys Ocean was located between ~33 ± 3°N (southernmargin
of Eurasia) and ~16 ± 3°N (northern margin of Gondwana). We have no independent paleomagnetic control
on the paleolatitudes of the Turkish ophiolites we studied, and we made no a priori assumptions for the loca-
tion of subduction initiation. We therefore used a 24.5 ± 11.5°N paleolatitude as reference, corresponding to a
reference inclination Iref = 40.2° ± 15.4°.

As a reference direction for the Troodos ophiolite we used the inclination of the “Troodos Magnetization
Vector” (D = 274°, I = 36.0° ± 7.0° [Clube and Robertson, 1986]) and a normal polarity, giving a Dref = 000°
and Iref = 36.0° ± 7.0°. Similarly, for the Hatay ophiolite we used the mean inclination from tilt corrected lavas
and layered gabbros [Inwood et al., 2009a], providing a reference direction of Dref = 000°, Iref = 32.4° ± 4.5°.
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This reference direction has also been applied to the adjacent Baer-Bassit ophiolite, whose crustal section also
records some negative inclinations [Morris et al., 2002] that are at odds with a primary magnetization
acquired during the Cretaceous Normal Superchron).

4. Results
4.1. Optical Microscope Observations

Optical microscope (transmitted light) observations of thin sections from representative samples of the
Divriği, Alihoca, and Göksun ophiolites (two thin sections per ophiolite) identified amineralogical assemblage
composed of plagioclase, clinopyroxene, chlorite, and opaque minerals (Figure 3). In samples from the
Göksun and Alihoca ophiolites strongly pleochroic amphiboles (likely hornblende) were also commonly
observed. Plagioclase is predominant (~70%) in samples from the Göksun and Divriği ophiolites. Texture is
ophitic in samples from the Göksun and Alihoca ophiolites, with large (approximately tens of micrometer)
pyroxenes within a matrix of plagioclase, while it is relatively equigranular in samples from the Divriği ophio-
lite (Figure 3). The internal fabric of all samples is isotropic.

Scanning electron microscope (SEM) observations coupled with EDX analyses (Figure 3) show the occurrence
of abundant magnetite grains with size ranging between ~10 and 100 μm, homogeneously dispersed within
the silicate matrix (at Divriği and Göksun), or forming ~100 μm large aggregates (at Alihoca). Magnetite grains
of ~0.5 μm, and even smaller, were identified in samples from the Divriği and Göksun ophiolites. In samples
from the Divriği ophiolite, the smaller grains are titanium-rich titanomagnetite (Figure 3).

Based on these analyses, we conclude that the dykes suffered only low-grade metamorphism under greens-
chist facies conditions, likely due to seafloor hydrothermal alteration during (or soon after) magmatic activity
at the spreading axis.

4.2. Rock Magnetism

Curie balance experiments, thermal variation of magnetic susceptibility, and thermal demagnetization
experiments (Figure 4) revealed a predominant Curie temperature of ~580°C in all analyzed samples, consis-
tent with the occurrence of stoichiometric magnetite [Dunlop and Özdemir, 1997]. Minor unblocking between
350 and 580°C is consistent with the occurrence of a small fraction represented by titanomagnetite [Dunlop
and Özdemir, 1997]. Effective removal of the remanence via AF demagnetization supports the occurrence of
low-coercivity magnetic minerals, like magnetite and titanomagnetite. Incomplete AF demagnetization of a
few specimens (sites DIV04 and DIV07) likely reflects partial low-temperature oxidation (i.e., maghemitization
[e.g., Prévot et al., 1981; Özdemir, 1990]) of original (titano)magnetite. Generally, straight to concave-upward
AF demagnetization decay paths indicate low-to-medium coercivity grains, consistent with a mixture of
single-domain and multidomain magnetic grains [Dunlop and Özdemir, 1997].

4.3. Paleomagnetism and Net Tectonic Rotation Analysis
4.3.1. Divriği Ophiolite
Magnetic remanences of 151 samples from seven sites from the Divriği ophiolite were analyzed by using AF
and thermal treatment, and the results are listed in Table 1. Remanence of the analyzed samples is composed
of one or two components of magnetization (Figure 5). When present, a low-stability component was
removed at 5–10 mT. Components interpreted as the Characteristic Remanent Magnetization (ChRM) were
isolated by demagnetization to 70–80 mT or 580°C. Their distribution is consistent with a PSV-induced scatter
(in the sense of Deenen et al. [2011]) at six out of seven sites (Table 1). Underrepresentation of PSV at site
DIV03 is interpreted to reflect fast cooling of dykes after intrusion, rather than remagnetization, and the direc-
tion of magnetization at this site was treated as a single spot reading of the geomagnetic field at the time
of emplacement.

Site mean directions (in situ coordinates) have a general northwestward declination and variable inclination,
which is substantially different from the present-day geocentric axial dipole (GAD) field direction at the sam-
pling locality (D = 000°, I = 59°), excluding recent remagnetization (Figure 6). A mean remanence direction
and dyke orientation was calculated for sites by combining similar results from sites DIV01, DIV02, DIV03,
and DIV06, which came from a relatively small area with dykes in similar orientations (Figure 6 and Table 1).
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Figure 3. Photomicrographs of three representative thin sections from the Divriği, Alihoca, and Göksun ophiolites analyzed at the optical microscope under (a, g, and
m) normal and (b, h, and n) polarized light, and (c, d, i, j, k, o, p, and q) scanning electron microscope (SEM). (e, f, l, and r) EDX elemental analysis graphs of ferro-
magnetic grains.
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The net tectonic rotation analysis provided two sets of solutions at all sites (Table 2). The preferred sets of
solutions indicate consistent 60–70° rotation around shallowly plunging axes, producing a moderate
northeastward tilt consistent with the distribution of the different ophiolitic units in the area, and only
minor vertical-axis rotations. Site DIV07 is located several kilometers away form the other sites, and a
small variability in the rotation parameters at this site is expected. The combination of permissible solu-
tions (after modeling of uncertainties) obtained at each site or site group provided 300 permissible net
tectonic rotation solutions. The initial dyke orientations (preferred solutions) are very consistent and

Figure 4. Results from rock magnetic experiments for representative samples from the Divriği, Göksun, and Alihoca ophiolite. (a) Thermal variation of low-field
magnetic susceptibility; the black (gray) lines are the heating (cooling) paths. (b) Thermal variation of magnetic remanence during Curie balance experiments;
the black (gray) lines are the heating (cooling) paths. (c) Magnetization decay paths during alternating field (AF) demagnetization. (d) Magnetization decay paths
(normalized values) during thermal demagnetization.
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Figure 5. Zijderveld diagrams [Zijderveld, 1967] of representative samples demagnetized using thermal (TH) and alternating field (AF) treatment, shown in in situ
coordinates. The solid and open dots represent projections on the horizontal and vertical planes, respectively. Demagnetization step values are in °C or in mT.

Figure 6. Stereographic projection (lower hemisphere) of the in situ characteristic remanent magnetization (ChRM) direc-
tions and corresponding virtual geomagnetic poles (VGPs) for the sampled sites. The grey shaded ellipses are the 95%
cones of confidence around the calculated site mean directions. The solid/open dots correspond to normal/reversed
magnetic polarity. The grey star indicates the direction of the present-day geocentric axial dipole (GAD) field at the
sampling locality (see text). The grey dots are the directions discarded after filtering with a 45° cutoff (represented by the
dotted small circles in the VGP plots).
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strike NNE-SSW, indicating an original WNW-ESE spreading direction (Figure 7 and Table 2). The alternate
sets of solutions have been discarded due to extreme between-site variability of the rotation magnitude
(from ~50° to ~120°).
4.3.2. Alihoca Ophiolite
Well-defined ChRMs were isolated in 26 samples (two samples displayed unstable magnetizations) by
demagnetization up to 70–80 mT or 580°C, after removal of low-stability components by treatment at
5–10 mT, or 200°C (Figure 5). Isolated ChRMs are NNW directed and statistically different from the GAD field
direction at this locality (D = 000°, I = 56.9°) (Table 1 and Figure 6). VGP scatter is consistent with that induced
by PSV [Deenen et al., 2011], consistent with a primary origin of the remanence.

Table 2. Results of the Net Tectonic Rotation Analysis [Allerton and Vine, 1987] for the Divriği, Alihoca, and Göksun Ophiolitesa

Site

Preferred Solution Alternate Solution

Rotation Axis Rotation

Initial Dyke Strike

Rotation Axis Rotation

Initial Dyke StrikeAzimuth Plunge Magnitude Sense Azimuth Plunge Magnitude Sense

Divriği
DIV01/02/03/06 355.7 24.6 67.1 CW 040 335.4 53.0 59.8 CCW 140
DIV04 305.8 38.9 69.9 CW 005 017.6 65.1 122.8 CCW 175
DIV05 337.2 26.8 73.8 CW 026 348.2 63.6 79.0 CCW 154
DIV07 197.9 16.5 57.3 CCW 079 229.3 39.3 49.6 CCW 101
Alihoca
AH 104.9 12.7 16.9 CCW 017 358.1 50.5 156.8 CCW 163
Göksun
GOK02/03 113.2 62.9 42.5 CW 020 017.0 27.1 135.5 CCW 160

aBoth preferred and alternate solutions are shown. Each solution is expressed as azimuth and plunge of the rotation axis, rotation magnitude and sense of rota-
tion, and initial dyke strike.

Figure 7. The rose diagram distributions of permissible initial dyke orientations for the studied ophiolites obtained by net tectonic rotation analysis based on the
method of Allerton and Vine [1987] and modified by Morris et al. [1998] and Koymans et al. [2016]. Data from the Sarıkaraman ophiolite is reported from van
Hinsbergen et al. [2016]. The mean dyke strike and relative standard deviation is shown for each ophiolite, together with the number of permissible solutions (n)
obtained after modeling of the errors.
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Two sets of net tectonic rotation solutions were obtained for the studied section (Table 2). The preferred set
of solutions indicates minor counterclockwise rotations around shallowly plunging axes and initial dyke
strikes ranging between N-S and NE-SW, consistent with an E-W to NW-SE spreading direction (Figure 7 and
Table 2). The alternate set of solutions shows unreasonably large rotations (~160° CCW) around steep axes
(Table 2) that are inconsistent with the much smaller counterclockwise rotations documented from this area
[Çinku et al., 2016].

4.3.3. Göksun Ophiolite
Paleomagnetic directions were effectively isolated by demagnetization at 80–100 mT or 580°C (Figure 4).
Isolated ChRM directions form two clusters: the first one (31 samples) is observed in samples from site
GOK01 and is north directed and close to the present-day GAD field direction at the sampling locality
(D = 000°, I = 57.5°; Figure 5 and Table 1), indicating probable recent remagnetization. The second cluster
(147 samples) is observed in specimens from sites GOK02 and GOK03 and is mainly northeastward directed
and with shallow inclinations (Figure 5 and Table 1). Sites GOK02 and GOK03 have been treated as a single
site, given their proximity and similar dyke orientations and paleomagnetic directions. These directions are
far from the present-day GAD field direction, and recent remagnetization can therefore be excluded. VGP dis-
tributions for site GOK02-GOK03 are consistent with a PSV-induced scatter (in the sense of Deenen et al.
[2011]), and hence compatible with a primary origin of the remanence.

Two sets of net tectonic rotation solutions were obtained by using the mean remanence from site
GOK02-GOK03 (Table 2). The preferred set of solutions shows a moderate clockwise rotation around a steep
east-plunging axis, indicating the predominance of clockwise vertical-axis rotations over tilt components. The
initial dyke strike is N-NNE, compatible with an ~E-W spreading direction (Figure 7 and Table 2). The dis-
carded alternate set of solutions shows a large counterclockwise rotation around a shallowly plunging axis.
This would require large tilt of the rock units, approaching overturning, inconsistent with the general struc-
tural setting of the ophiolite.

4.3.4. Troodos Ophiolite
Paleospreading directions for the Troodos ophiolite were determined by using a net tectonic rotation analy-
sis based on previously published paleomagnetic data from the sheeted dyke complex [Bonhommet et al.,
1988; Morris et al., 1990, 1998; MacLeod et al., 1990; Morris and Maffione, 2016]. Single net tectonic rotation
solutions were obtained from the nine sites studied byMacLeod et al. [1990] andMorris et al. [1990] and were
therefore discarded. Two sets of solutions were obtained at 35 sites from northwestern Troodos (23 sites from
Morris and Maffione [2016]), eastern Troodos (9 sites from Bonhommet et al. [1988]), and the Akamas penin-
sula (3 sites exposing “early dykes” from Morris et al. [1998]). As preferred solutions we selected those pro-
viding large counterclockwise rotations, consistent with the well-constrained paleomagnetic declinations
determined from the extrusive sequences and sedimentary cover of the ophiolite [Clube and Robertson,
1986]. The 75 permissible preferred solutions (after modeling of uncertainties) from each of the 35 sites
were combined providing 2625 permissible solutions for the Troodos sheeted dyke complex. These
solutions reveal consistent ~NE-SW initial dyke strikes (Figure 7), from which we infer an ~NW-SE
paleospreading direction.

4.3.5. Hatay Ophiolite
Paleospreading directions were calculated for the Hatay ophiolite by using a net tectonic rotation analysis
based on published paleomagnetic data from 24 sites within the sheeted dyke complex [Inwood et al.,
2009a]. Two sets of solutions were obtained at each site. Modeling of the errors associated with the input
vectors of the net tectonic rotation analysis and combining all solutions from the 24 sites produced 1800
permissible net tectonic rotation solutions. The preferred solutions for our analysis were selected in agree-
ment with preferred solutions of Inwood et al. [2009a]. These solutions indicate initial ~N-S dyke strikes,
corresponding to an approximate E-W paleospreading direction (Figure 7).

4.3.6. Baer-Bassit Ophiolite
Paleospreading directions were calculated for the Baer-Bassit ophiolite by using published paleomagnetic
data from the sheeted dyke section (17 sites from Morris et al. [2002]), which have been combined into four
site groups (Table 1). Two sets of net tectonic rotation solutions have been obtained at each site group, with
the preferred solutions chosen following Morris et al. [2002]. The combined data set of 300 permissible
solutions from the four site groups indicates ~N-S trending initial dyke strikes, consistent with an ~E-W
paleospreading direction (Figure 7).
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5. Discussion
5.1. Tectonic Meaning of Paleospreading Directions in the Neo-Tethyan Ophiolites

The ophiolites investigated in this study all have a suprasubduction zone geochemical signature [e.g.,
Robertson, 2002, 2004]. Formation of SSZ ophiolites and associated metamorphic soles is widely viewed as
intrinsically related to subduction initiation [e.g., Stern and Bloomer, 1992; Dilek and Furnes, 2011; Stern
et al., 2012, Maffione et al., 2015b, van Hinsbergen et al., 2015]. As a consequence, the occurrence of a major
Late Cretaceous subduction initiation event within the eastern Mediterranean Neo-Tethys Ocean is now
widely accepted [e.g., Robertson, 2002, 2004].

The Late Cretaceous Neo-Tethyan ophiolites represent relics of new “fore-arc plates” that grew at new (or
reactivated) plate boundaries within the Neo-Tethys above active subduction zones. These fore-arc plates
must have been narrow, at least during SSZ spreading, and were bordered by a trench that consumed
African plate lithosphere (including the Anatolide-Tauride microcontinental fragment). North of this trench
was the other part of the Neo-Tethys Ocean that was already subducting below the Pontides since the
Jurassic (the “Anadolu plate” of Gürer et al. [2016]). It follows that paleospreading directions from these ophio-
lites reflect the kinematics of the spreading system of these fore-arc plates located between the new trenches
and the Anadolu plate. These kinematics were controlled by the relative motion between the Anadolu plate
and the trenches at which African lithosphere subducted, with trench motion driven by motion of the sub-
ducted slab relative to the mantle (e.g., roll-back).

Paleospreading direction data obtained from the six ophiolites investigated in this study, plus the
Sarıkaraman ophiolite from van Hinsbergen et al. [2016], consistently indicate ~N-S to ~NE-SW initial orienta-
tions of the ridges from the correspondent SSZ fore-arc plate(s) (Figure 8). Restoring the orientation of the
trench adjacent to these spreading centers cannot be constrained directly but requires more circumstantial
arguments. Suprasubduction spreading ridges vary between two end-members, i.e., perpendicular to the
associated trench and parallel to it [e.g., Casey and Dewey, 1984]. Suprasubduction spreading ridges perpen-
dicular to the trench have been proposed for, e.g., the Bela andMuslim Bagh ophiolites of Pakistan [Gnos et al.,
1997; Gaina et al., 2015] and the Bay of Island ophiolite [Dewey and Casey, 2013]. Suprasubduction spreading
ridges parallel to the trench have been proposed for, e.g., the Mirdita ophiolite [Maffione et al., 2015b] and the
Izu-Bonin-Mariana fore arc, where basalts and boninites were emplaced at ~50 Ma simultaneously over a
>500 km long fore arc [Reagan et al., 2010; Ishizuka et al., 2011; Pearce et al., 2015; Arculus et al., 2015].

The regional age distribution of SSZ ophiolites from Turkey, Cyprus, and Syria may provide clues to discrimi-
nate between the two end-member scenarios discussed above: SSZ geochemical signatures require that
spreading occurred within some 100–150 km from a trench [e.g., Pearce et al., 1984; Stern et al., 2012].
Typical full spreading rates of magmatic spreading centers are of 4–6 cm/yr [e.g., Müller et al., 2008]. At such
rates, fore-arc SSZ spreading ridges perpendicular to trenches would produce laterally diachronous ages of
SSZ crust in hundreds of kilometers long ophiolite belts like those in the eastern Mediterranean. On the other
hand, SSZ spreading ridges parallel to trenches would predict that ophiolites generated at such ridge only
during a short period of time (i.e., 1–3 Myr) after the inception of SSZ magmatism. In fact, keeping the trench
fixed, any trench-parallel suprasubduction ridge would migrate away from it at half spreading rate, generat-
ing back arc rather than SSZ-affinity crust within 4–5 Myr (considering typical full spreading rates of
4–6 cm/yr). The very narrow age range of ~95–90 Ma in which the eastern Mediterranean SSZ ophiolites
formed across a geographically wide area thus strongly favors a scenario in which the No-Tethyan trenches
were parallel to the suprasubduction spreading centers at which the Upper Cretaceous ophiolites formed.

It follows that the paleospreading directions calculated in this study are consistent with Neo-Tethyan subduc-
tion zones striking ~N-S to ~NE-SW. A kinematic restoration of the central Anatolian trench at which the
Sarıkaraman ophiolite formed and thrust within ~10 Myr after subduction initiation onto the Kırşehir block
further confirms that the intraoceanic trench there was ~N-S striking [van Hinsbergen et al., 2016].

5.2. The Late Cretaceous Geometry of the Subduction System in the Western Neo-Tethys and the
Tectonic Evolution of the Eastern Mediterranean Ophiolites

Our new paleospreading direction data from several ophiolites of Turkey, Cyprus, and Syria (Figure 7) indicate
that suprasubduction spreading centers formed within the Neo-Tethys above active ~N-S to ~NE-SW
oriented subduction segments. This reconstruction, however, is incompatible with current
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paleogeographic and tectonic models. These used the modern alignment of the Upper Cretaceous ophiolites
in the eastern Mediterranean region (forming three E-W trending parallel belts (Figure 1)) to infer that
multiple ~E-W trending subduction zones simultaneously formed at preexisting ~E-W trending mid-ocean
ridges within the northern and southern Neo-Tethyan strands of the eastern Mediterranean, all
accommodating ~N-S convergence between Africa-Arabia and Eurasia during the Late Cretaceous [Şengör
and Yilmaz, 1981; Ricou et al., 1984; Whitechurch et al., 1984; Dilek and Delaloye, 1992; Lytwyn and Casey,
1993; Dilek et al., 1999; Robertson, 2002; Moix et al., 2008; Menant et al., 2016].

Our new results now require an alternative kinematic model of Late Cretaceous subduction initiation in the
Neo-Tethys. Considering the regional distribution of the Neo-Tethyan ophiolites and the documented
paleospreading directions, we propose that the Sarıkaraman and Alihoca ophiolites were likely formed above
a western ~N-S trending subduction segment, which formed within oceanic lithosphere but close and paral-
lel to the margin of the Kırşehir block (Figure 8). As pointed out by van Hinsbergen et al. [2016], subduction
must have started within tens of kilometers from the continental margin, since the Central Anatolian ophio-
lites were thrust southwestward upon the continental margin of the Kırşehir block within ~10 Myr after sub-
duction initiation. Furthermore, considering their present-day location, and their comparable geochemical
signature, paleospreading directions, and tectonic rotations, we restore the Divriği, Göksun, Troodos,
Hatay, and Baer-Bassit ophiolites altogether along a different, eastern ~N-S to ~NE-SW trending subduction
segment, which was likely parallel to the eastern margin of the Tauride block (Figure 8).

The regional ~N-S convergence between Africa-Arabia and Eurasia does not conflict with this configuration;
other factors, including buoyancy forces acting on subducting slabs, may in fact control the kinematics of
subduction zones and the associated overrriding plate deformation and magmatism. Clear examples of

Figure 8. Paleogeographic reconstruction of the eastern Mediterranean Neo-Tethys soon after subduction initiation
(~95 Ma) showing the main subduction zones. The dark blue shaded area adjacent to the trench in a fore-arc position
indicates the source area of the suprasubduction zone ophiolites. The proposed eastward invasion of the southeastern
subduction segment at ~85 and ~70 Ma is shown. The blue arrows indicate the transport directions of ophiolites from the
Troodos microplate toward the southern margin of the Tauride (Göksun ophiolite) and the northern margin of Gondwana
(Troodos, Baer-Bassit, and Hatay ophiolites). K, Kırşehir block. SA, Sarıkaraman ophiolite. AH, Alihoca ophiolite. DI, Divriği
ophiolite. GO, Göksun ophiolite. TR, Troodos ophiolite. BB, Baer-Bassit ophiolite. HA, Hatay ophiolite.
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this can be found in the western Mediterranean where subduction zones formed at low angle to the regional
~N-S Africa-Europe convergence [Faccenna et al., 2001; Rosenbaum et al., 2002]. Further investigations are
needed to determine whether the inferred subduction zones of the Neo-Tethys formed spontaneously
[Stern, 2004] or upon compression [Gurnis et al., 2004] oriented ~E-W.

Based on the major ~90° counterclockwise rotations that were recorded from the Troodos, Hatay, and Baer-
Bassit ophiolites [Morris et al., 2002; Inwood et al., 2009a, 2009b], we argue that the southern part of the ori-
ginal N-S trending trench along the eastern Taurides underwent a microplate rotation, consistent with earlier
conclusions of, e.g., Morris et al. [2002]. We suggest that ophiolites emplaced onto the Bitlis massif, which we
associate to the Arabian margin, were also part of this microplate and arrived on the Bitlis margin within
~10 Myr of subduction initiation. This would explain the ~85–80 Ma high-pressure metamorphism in the
Bitlis massif [Oberhänsli et al., 2014, 2012]. The Göksun ophiolite also arrived within ~10 Myr after subduction
initiation onto continental crust, but in this case of the southeastern Taurides, opposite to the oceanic embay-
ment that separated Arabia and the Taurides. This is consistent with its clockwise rotation documented in this
study (Table 1). We thus propose that the original N-S trending subduction zone along the eastern Tauride
margin underwent a westward invasion into the eastern Mediterranean embayment involving fast rollback
(Figure 8), as previously suggested by Moix et al. [2008]. This process would have been similar to that
observed, e.g., in the Gibraltar arc [van Hinsbergen et al., 2014] or the Banda arc [Spakman and Hall, 2010].
This invasion may also explain the enigmatic tectonic history of the Antalya and Alanya nappes. The
Alanya nappes, with their 85–80 Ma HP metamorphism, may have accreted from the easternmost
Taurides, at the time the trench hit the SE Tauride margin during Göksun ophiolite emplacement. These
Alanya nappes then traveled with the ophiolite far westward and were finally thrust northward over the
SW Tauride block, which was experiencing internal thrusting leading to the formation of the Antalya nappes
in the latest Cretaceous. The Mersin ophiolite could have also been involved in this invasion process, as sug-
gested by its NW-ward emplacement direction onto the Bolkardag Mesozoic carbonates [Parlak et al., 1996].
The arrest of the invasion is documented by Maastrichtian sediments sealing the frontal thrusts of the
Antalya-Alanya nappes and the obduction front of the Baer-Bassit and Hatay ophiolites. The invasion, how-
ever, may have endured locally, enabling, e.g., the Troodos ophiolite to continue its intraoceanic rotation until
the Eocene [Morris et al., 2006].

Our proposed scenario does not require the simultaneous formation of multiple, in-sequence subduction
zones within a relatively small area of the Neo-Tethys as proposed by several models [e.g., Robertson,
2002]. Our results are instead consistent with the formation of a single, step-shaped subduction system com-
posed of ~NNE-SSW and ~WNW-ESE segments that may have followed the shape of preexisting continental
margins (Figure 8), in agreement with recent studies [Advokaat et al., 2014; van Hinsbergen et al., 2015, 2016].
We propose that the two discrete ~NNE-SSW oriented subduction segments were offset along an ~WNW-ESE
oriented fault zone, which initially may have been a transfer fault linking these two trench segments. The
~E-W trending Tauride belt, including HP-LTmetamorphic rocks of the Afyon zone [Pourteau et al., 2010], sug-
gests that this fault zone must have developed into a subduction zone itself and likely emplaced ophiolites
onto the Taurides (Figure 8). The proposed kinematics represents a snapshot of the initial stage of subduction
initiation when ophiolites are formed, and it may have evolved differently after fewmillions of years when the
subduction became self-sustaining. From that time the regional ~N-S convergence between Europe and
Africa-Arabia might have played a more central role in the evolution of the subduction zone.

This step-shaped Late Cretaceous subduction zone may have connected to the northwest with the subduc-
tion zone below the Pontides through a trench-trench-trench triple junction, as previously suggested by van
Hinsbergen et al. [2016] (Figure 8). To the east, this subduction zone along the eastern edge of the Tauride
platform may eventually have connected further east with the subduction system responsible for the forma-
tion of the Oman ophiolite.

5.3. Where did Subduction Start in the Neo-Tethys? A New Kinematic Model of Subduction Initiation
in the Neo-Tethys

Previous studies have—logically—argued that intraoceanic subduction zones are likely to initiate at preexist-
ing active intraoceanic plate boundaries: transform faults and (detachment faults along) spreading ridges
[e.g., Gurnis et al., 2004; Maffione et al., 2015b; van Hinsbergen et al., 2015]. Our new results, however, seem
to point out to a different kinematics incompatible with these widely accepted models. Our new data
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rather suggest that the Late Cretaceous subduction system formed parallel to the main continental margins
of the Anatolide-Tauride block, which had ~E-W and ~N-S trending segments [Şengör et al., 2008; van
Hinsbergen et al., 2016] likely representing a passive margin offset by fracture zones (Figure 8). It is, in fact,
unlikely that an active Neo-Tethyan ridge was present so close to these continental margins in the Late
Cretaceous, as ophiolite emplacement age constraints would require. Upon northward drift of Sakarya
toward Eurasia, the Neo-Tethys Ocean opened in the Early Triassic (~245 Ma) as suggested by the oldest radi-
olarian cherts found in the mélanges below these ophiolites [Tekin et al., 2016]. According to plate kinematic
reconstructions, the Neo-Tethys was ~3000 km wide in the Late Cretaceous [e.g., Gaina et al., 2013; Torsvik
and Cocks, 2016], and since the middle Jurassic it started to be subducted to the north below the Pontides
[Okay et al., 2013; Dokuz et al., 2017]. This implies that the Triassic Neo-Tethyan ridge, initially formed close
to the northern margin of Gondwana (i.e., Anatolide-Tauride block), must have been some 1500 km north
of it by the Middle Jurassic. Given reconstructed Africa-Europe convergence rates [Seton et al., 2012], even
without ongoing spreading, this ridge would have long been subducted below the Pontides by the Early
Cretaceous. These considerations imply that no active spreading ridge was present in the Neo-Tethys imme-
diately before the Late Cretaceous subduction initiation event (unless a different spreading center formed
close to continental margins at some point before Late Cretaceous subduction initiation, for which there is
no geological evidence). We therefore rule out the widely accepted idea that Late Cretaceous subduction
initiation in the Neo-Tethys started along active intraoceanic plate boundaries [e.g., Şengör and Yilmaz,
1981; Ricou et al., 1984; Robertson, 2002; Moix et al., 2008; Menant et al., 2016] and propose that lithospheric
weaknesses within old (likely Triassic) oceanic lithosphere were instead used to start the Late Cretaceous
subduction system.

Because the Neo-Tethys Ocean opened along an approximate N-S direction due to northward migrations
of continental blocks detached from the Gondwana landmass [e.g., Moix et al., 2008], the Neo-Tethyan
lithosphere must have been cut by ~N-S striking fracture zones (i.e., the inactive parts of a transform
fault) offsetting Triassic ~E-W oriented ridge segments. Interpreting our new results in the context of
the above considerations, we propose that Late Cretaceous subduction in the Neo-Tethys initiated
along ~NNE-SSW trending old fracture zones and (perhaps hyperextended) orthogonal ~WNW-ESE
continental margins.

These somewhat unexpected inferences pose new intriguing questions: What are the causes, mechanisms,
and required forces to start a new subduction zone along fracture zones within old and cold lithosphere?
How can metamorphic soles below the Neo-Tethyan ophiolites, commonly interpreted as a result of sub-
duction initiation below an active spreading ridge to explain their abnormally hot conditions [Wakabayashi
and Dilek, 2003; Dewey and Casey, 2013; van Hinsbergen et al., 2015], form in the absence of such a preex-
isting heat source? A multidisciplinary array of future studies is needed to address these fundamental
questions. For now, we conclude that current concepts of intraoceanic subduction initiation and formation
of ophiolitic metamorphic soles cannot explain the kinematic observations and restorations we presented
in this paper.

6. Conclusions

1. Our new paleospreading direction analysis indicate that the Divriği, Alihoca, Göksun, Sarikaraman,
Troodos, Hatay, and Baer-Bassit ophiolites of Turkey, Cyprus, and Syria formed at ~N-S to ~NE-SW striking
suprasubduction spreading centers. Based on these new data and the published age constraints from the
ophiolitic crust and underneath metamorphic soles, we propose that ~NNE-SSW striking intraoceanic
subduction zones formed within the Neo-Tethys in the Late Cretaceous, i.e., at low angle to the then
pertinent Africa-Europe convergence directions. We suggest that these subduction segments were part
of a larger step-shaped subduction system composed of ~NNE-SSW and ~WNW-ESE segments that devel-
oped along preexisting lithospheric weakness zones within the Neo-Tethys Ocean.

2. Subduction must have started close (~100 km) to the continental margins of the Anatolide-Tauride block,
as indicated by the known short time span (~10 Ma) between ophiolite formation at suprasubduction
spreading centers and their emplacement.

3. After subduction initiation, ophiolites that formed above the ~NNE-SSW trending subduction zone east of
the Taurides invaded the SE Mediterranean ocean as the slab rolled back westward. This led to major
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rotations and radial emplacement/motion of ophiolites in the Maastrichtian, southward towards NW
Arabia (Cyprus, Hatay, and Baer-Bassit), and northward onto the SW Tauride block (Göksun).

4. At the time of subduction initiation (~95 Ma), the Triassic Neo-Tethyan spreading ridge that formed dur-
ing fragmentation of Gondwana and subsequently migrated to the north following the drifting of conti-
nental blocks would have already been subducted to the north below the Pontides. This implies that the
Late Cretaceous Neo-Tethyan subduction system started at lithospheric weakness zones within ancient
(Triassic?) lithosphere. Based on our new results, we propose an alternative model where an intra-Neo-
Tethyan subduction zone formed along preexisting ~NNE-SSW fracture zone segments (i.e., inactive parts
of a transform fault) that were laterally connected along faults parallel to the passive (hyperextended?)
margins of the Anatolide-Tauride block. Our alternative scenario calls for further investigations on the
mechanisms of subduction initiation along inactive plate boundaries (rather than active, as typically
assumed) and the formation of metamorphic soles below ophiolites in the absence of a heat source
(i.e., an active spreading ridge).
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