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Abstract Quantifying the amount of stretching in extensional basin systems is often challenging in the
absence of seismic profiles or boreholes. However, when fault spacing and orientation as well as vertical
axis rotation patterns are known, map-view restoration may provide a good estimate of total extension.
This integrated structural and paleomagnetic approach provides a relatively straightforward tool in
extensional basin restoration and fault zone kinematic analysis. Here we provide results of an extensive
paleomagnetic survey of the Neogene Central Tauride intramontane basins (SW Turkey), where previous
work revealed a complex array of basin-bounding normal faults and relay ramps. In total, 437 oriented
cores were sampled at 43 sites distributed within Miocene-Pliocene continental sedimentary rocks from
the Ilgın, Altınapa, Yalvaç, and Beyşehir basins. Despite the more or less coherent overall strike of the
mountain belt and basins, rotations vary from ~42° clockwise (Yalvaç) to ~10° (Beyşehir), ~21° (Ilgın), and
~30° (Altınapa) counterclockwise. We show that the rotation pattern is related to normal faults and
lateral variations in fault displacement superimposed on regional rotation patterns. We restore these to
estimate a minimum NE-SW horizontal extension of ~30–35 km across the basin system. As a consequence
of our reconstruction, it appears that the Sultandağları range that exposes low-grade metamorphic
Paleozoic and Mesozoic rocks of the Geyikdağı and Bolkardağ nappes of the Taurides represents a
Miocene extensional core complex.

1. Introduction

The amount and rate of extension is an important parameter in assessing physical properties of sedimentary
basins (Jarvis & Mckenzie, 1980). In smaller basin systems, estimates may be derived from calculating indivi-
dual normal fault throws if offset markers are constrained, for example, through seismic profiles or borehole
data (Gibbs, 1983; Jackson, 1987). In the many occasions where such data are unavailable, however, estimat-
ing normal fault displacement is challenging, because displacedmarkers are buried in hanging walls andmay
be eroded in footwalls.

An alternative and indirect approach to arrive at first-order estimates of extension is by integrating structural
analysis with paleomagnetic analysis of vertical axis rotation patterns. Extensional basins are often laterally
discontinuous, and within (half-)grabens, normal fault systems are often segmented, whereby segments
are connected through relay ramps (e.g., Larsen, 1988; Ori, 1989; Peacock, 2002; Peacock & Sanderson,
1994; Trudgill & Cartwright, 1994). Such systems, developing at the scale of laterally discontinuous (half) gra-
bens or at the scale of individual normal fault segments, are associated with lateral strain variations, which
lead to vertical axis rotations. On a regional scale, lateral variation in regional back-arc basin extension led
to major opposite forearc block rotations in, for example, the Aegean region (van Hinsbergen & Schmid,
2012) or the Sea of Japan (e.g., Martin, 2011). On a smaller scale, vertical axis rotations may result from lateral
displacement variations on individual faults (Sussman et al., 2004).

Behavior of fault-bounded crustal units may vary from rigid, discrete blocks to regionally uniformly distribu-
ted shear. In the case of rigid blocks that remain internally undeformed, strain is accommodated by slip at
bounding fault zones and rotation is accommodated by laterally varying displacements along bounding
faults (Nelson & Jones, 1987). This model is best applicable to upper crustal, brittle deformation on the scale
of individual basins, where the main faults and intervening undeformed blocks are mapped. On larger scale,
for example, of large basin complexes, an alternative approach is to abandon the concept of rigidity and use a
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continuum description for deformation (McKenzie & Jackson, 1983). In both approaches, blocks within a
single domain rotate by the same amount in the same direction (Garfunkel & Ron, 1985; McKenzie &
Jackson, 1983; Ron et al., 1984).

Vertical axis rotation analysis may thus help to quantify the amount of regional horizontal strain variations.
These relative variations may either provide minimum estimates of total strain across a region and may be
converted to total strain if calibrated in one location (e.g., where no deformation occurred, on a lateral edge
of an extensional domain). Different senses of vertical block rotation, either clockwise (CW) or counterclock-
wise (CCW) within a single domain may further help to find style and amount of deformation.

A wide extensional domain hosting the Neogene Central Tauride intramontane basins (CTIB) in SW Turkey is
an example of a probably relatively low-strain extensional region where the total amount of extension
remains unquantified. Simultaneously with the formation of these basins, a westward convex orocline
formed in the Central Taurides (Koç, van Hinsbergen, et al., 2016). This oroclinal bending was associated with
several tens of kilometers of shortening to the west and has been attributed to be caused by an isolated
Antalya slab (Biryol et al., 2011; van der Meer et al., 2018) that may or may not still be connected to the
Bey Dağları foreland of SW Turkey (Koç, van Hinsbergen, et al., 2016). The CTIB to the east of the orocline
may balance the shortening in the front such that the oroclinal bending was associated with no net displace-
ment between Central and Western Turkey (Figures 1a and 1b). To test this, however, a quantification of
Miocene extension in the CTIB is required.

The CTIB hosts a series of Mio-Pliocene continental extensional sedimentary basins, including the Beyşehir,
Yalvaç, Ilgın, and Altınapa basins, which are located in the hanging walls of major normal fault systems that
are structurally well mapped (Koç et al., 2017; Koç, Kaymakci, et al., 2016; Koç et al., 2012; Koçyiğit & Özacar,
2003; Figure 1c). The present-day tectonic regime in these continental basins shows that the region experi-
ences active extension, as portrayed by active seismicity, earthquake focal mechanisms, field data including
fault plane solutions, and GPS measurements (Kalyoncuoğlu et al., 2011; Koç et al., 2017; Koç, Kaymakci, et al.,
2016; Koç et al., 2012; Koçyiğit & Özacar, 2003; Reilinger et al., 2006; Figure 2). Basin analysis revealed that the
modern extensional regime in these continental basins started in at least Middle Miocene times and probably
already in the Early Miocene when the first sediments started accumulating (Koç et al., 2017; Koç, Kaymakci,
et al., 2016; Koç et al., 2012). What makes these basins particularly complex is that bounding normal fault

Figure 1. (a) Simplified structural map with the major tectonic zones of Turkey overlain on a Shuttle Radar Topography Mission (SRTM) topographic image. (b) Major
tectonic structures and units in the Isparta angle. (c) Simplified geological map of the study area.
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systems are multidirectional and strike at angles of ~90° to each other, and on the scale of the basins,
multidirectional, dominantly NE-SW and NW-SE extension prevailed from the Miocene to the present (Koç
et al., 2017; Koç, Kaymakci, et al., 2016; Koç et al., 2012).

Here we provide results of an extensive paleomagnetic study constraining vertical axis rotation in the
Beyşehir, Yalvaç, Ilgın, and Altınapa basins since the Miocene. We integrate the results with constraints on
normal fault geometry, pattern, and evolution to arrive at a first-order map-view reconstruction that allows
estimating horizontal extension in the study area. We discuss these results within the context of the tectonic
and geodynamic evolution of the Central Tauride region and illustrate the general use of paleomagnetic con-
straints in estimating crustal extension by restoring tectonic rotations.

2. Geological Setting and Structural Geological Constraints

Complex deformation in Anatolia is caused by long-lived convergence between Africa and Eurasia since the
Cretaceous (Figure 1a). The convergence was accommodated by northward subduction at multiple subduc-
tion zones that consumed a complex paleogeography of continental platforms and basins collectively
referred to as the Adria-Turkey Plate (Stampfli et al., 1991) or Greater Adria (Gaina et al., 2013), of which
the Anatolian part is referred to as the Anatolide-Tauride block (s) (Barrier & Vrielynck, 2008; Dewey &
Şengör, 1979; Gürer et al., 2016; Okay, 1986; Pourteau et al., 2010; Robertson, 2004; Şengör & Yılmaz, 1981;
van Hinsbergen et al., 2016). The İzmir-Ankara-Erzincan suture zone runs along the southern margin of
Pontides, which have been part of Eurasia since at least mid-Mesozoic time, and marks the former position
of the Northern Branch of the Neotethys (Şengör & Yılmaz, 1981). A second subduction zone originated
within the Neotethys ocean to the north of the (Anatolide)-Taurides in Late Cretaceous time. It accommo-
dated subduction of the continental lower crust during the latest Cretaceous to Eocene during which time
continental upper crust was stacked into the Taurides fold-thrust belt. The Taurides and Africa were sepa-
rated by this subsequently consumed oceanic lithosphere of the Southern Branch of the Neotethys (Gürer

Figure 2. Major structures of the region are shown on a shaded relief image, with moment tensor solutions of the recent
major earthquakes. Beach balls with red show focal mechanism solutions from Harvard Global Centroid Moment Tensor
(CMT) catalog, and beach balls with blue indicate focal mechanism solutions from Ergin et al. (2009), Taymaz et al. (2004),
Poyraz et al. (2014), Earthquake Research Department (ERD, Ankara), and Institute of Tchnology (ETH) of Zurich (ETHZ)
catalogs. Label for earthquake mechanism indicates date, magnitude, and hypocenter depth.
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et al., 2016; Menant et al., 2016; van Hinsbergen, Kaymakci, et al., 2010; van Hinsbergen et al., 2016). This
subduction zone is still active today along the Cyprus subduction zone to the west of the island of Cyprus
(Granot, 2016; Khair & Tsokas, 1999). Anatolia is located on the overriding plate of this complex subduction
system with bow-like trenches forming at the junction of Aegean and Cyprus arcs (Figure 1a). In Eastern
Turkey, this Southern Branch has been entirely subducted and is demarcated by the Bitlis suture zone, with
the arrest of subduction at the end of the Middle Miocene (Faccenna et al., 2006; Hüsing et al., 2009; Keskin,
2003; Okay et al., 2010; Şengör et al., 2003; Şengör & Yılmaz, 1981). Subduction along the Cyprus arc is in its
latest stages, and subduction of the stretched African continental margin and overlying Cretaceous obducted
ophiolitic klippen has occurred since the Late Miocene on Cyprus and was probably associated with slab
break-off since the Middle Miocene (Biryol et al., 2011; Faccenna et al., 2006; Gans et al., 2009; Schildgen
et al., 2014; van der Meer et al., 2018). To the west, the Antalya slab is located below the Bay of Antalya, is
separated by a gap from the Cyprus slab (Biryol et al., 2011; van der Meer et al., 2018), and may have been
decoupled from the African plate since the Eocene.

During this intense deformation history of shortening, a fold and thrust belt formed a carbonate-dominated
mountain range in southern Turkey, with dominantly south (west) ward thrusting until Late Eocene time
(Altıner et al., 1999; Andrew & Robertson, 2002; Mackintosh & Robertson, 2009; Meijers et al., 2011; Özer
et al., 2004; Ricou et al., 1975). The belt shows major large-displacement thrusts and smaller-scale duplexes
and imbricates, and today its high topography (at elevations up to 2,200 m) is covered by Neogene sedimen-
tary basins (Figures 1b and 1c). These basins formed in the upper plate above the Cyprus and Antalya slabs
and were filled by marine to continental sediments and volcanics. The dominantly marine basins (Aksu,
Manavgat, and Küprüçay basins, Figure 1b) are located mainly in the central and southern limb of the belt
while the continental basins started to form in the north, since the Early Miocene. These intramontane basins
include the Altınapa, Yalvaç, Ilgın, and Beyşehir basins (Figure 1c), which are the main concern of this study.
The stratigraphy of the Altınapa basin is displaying Early Miocene fining upward fluvio-lacustrine sediments
(which we name the lower Altınapa unit), unconformably overlain by Middle Miocene lacustrine and volca-
niclastic sediments, as well as andesitic lavas (upper Altınapa unit). 40Ar/39Ar dating from volcaniclastic levels
provide 11.8–11.6 Ma ages and the main basin forming phase occurred prior to 11.8 Ma (Koç et al., 2012). The
Ilgın basin (IB) shows a similar stratigraphy with the earliest age recorded in Early Miocene lacustrine deposits
at Harami (Krijgsman et al., 1996). These deposits are the distal equivalent of Early Miocene red clastic depos-
its in the western edge of the IB. These red clastics are uncomformably overlain by Middle Miocene lacustrine
deposits (Koç et al., 2017). This age is also supported by the radiometric age determinations from pumice
deposits in the stratigraphy of the IB (11.61 Ma). A similar stratigraphy was recently documented from the
Yalvaç basin (YB) with the clearest depocenter represented by Middle Miocene fine-grained lacustrine depos-
its (Koç, Kaymakci, et al., 2016). The onset of sedimentation in the YB is not known precisely, but available
biostratigraphic control shows that it must have started during or before the Middle Miocene. The
Beyşehir basin (BB) also contains lacustrine sediments and volcanics, and these comprise the youngest
deposits we sampled, with the Early Miocene-Pliocene age (Keller et al., 1977; Tatar et al., 2002).

The major (normal) faults bounding these continental basins are the Beyşehir fault bordering the west side of
Beyşehir Lake and BB, the major Aksehir-Afyon fault zone bordering the western limit of the IB (Figure 2).
These major faults also governed basin formation, with proximal facies close to the basin margins and basin-
ward grading into lacustrine deposits, representing local depocenters. Between the Aksehir-Afyon fault zone
and Ilgın fault a number of E-W trending normal faults have been documented (Koç et al., 2017) (Figure 2)
that redistribute the strain laterally and connect to these major faults through relay ramp geometry.
Paleostress inversion analysis based on growth faults shows that the basins formed during multidirectional
extension, with NE-SW to E-W extension dominating over subordinate N-S extension (Koç et al., 2017).

Despite the long and intense history of shortening caused by Africa-Europe convergence, the present-day
tectonic regime as portrayed by active seismicity, earthquake focal mechanisms, field data, including fault
plane solutions, and GPS measurements shows that these basins experienced extension, and extension-
related subsidence is controlled by these basin bounding faults. Focal mechanism solutions of moderate-size
earthquakes in historic times along the major faults indicate regionally multidirectional extension, with the
range-bounding major normal faults accommodating dip-slip NE-SW extensions that occur in tandem with
NW-SE extension accommodated along less prominent fault zones (Ergin et al., 2009; Koç et al., 2017;
Poyraz et al., 2014; Taymaz et al., 2004; Tiryakioğlu et al., 2013; Figure 2).
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3. Paleomagnetic Sampling and Analysis

In total, 437 oriented cores were sampled at 42 sites distributed within Miocene-Pliocene continental (mostly
lacustrine) sedimentary rocks from the CTIB at the eastern limb (Ilgın and Altınapa basins) and central part
(Yalvac and Beyşehir basins) of the Isparta angle. We sampled fresh sedimentary rock in exposures away from
major brittle faults to minimize rotations reflecting local deformation. From the IB 12 sites were sampled, 17
sites come from the Altınapa basin, 8 sites were collected from the YB, and 5 from the BB (Figures 2 and 6).
Samples were taken from limestones, silt, and claystones, and from a few tuffs deposited in lacustrine envir-
onments. Samples were drilled using a gasoline poweredmotor drill, and sample orientations weremeasured
with a magnetic compass. Sample orientations as well as bedding attitudes were corrected for present-day

Figure 3. Thermomagnetic curves using six heating and cooling cycles (red lines) up to 700 °C for representative samples. The final cooling segment (blue line) is
indicated with a thicker line. A noisy appearance is indicative of a weak magnetic signal. See text for explanation of the thermomagnetic behavior.
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declination (+4.5°). At least 10 standard oriented cores were collected from each site after removing the
weathered surface of the outcrop. In the laboratory, samples were cut into standard specimens, providing
in most cases two or more specimens per core (referred to as A and B specimens, for deeper and shallower
parts of the core, respectively).

To determine magnetic carriers of the ChRM in the samples, thermomagnetic runs were carried out in air
(Figure 3), using a modified horizontal translation-type Curie balance, with a sensitivity of ~5 × 10–9 Am2

(Mullender et al., 1993). Approximately 50–100 mg of powdered rock sample (depending on the magnetic
intensity of the sample) was put into a quartz-glass sample holder held in place by quartz wool. The measure-
ment procedure consists of six heating and cooling cycles up to a maximum of 700 °C with 10 °C/min rates.

Approximately 660 specimens were demagnetized (Table 1). Thermal stepwise demagnetization of ~440
specimens was performed in (20–30°) temperature steps from room temperature up to 400–680 °C (depend-
ing on the maximum unblocking temperature) to verify the reproducibility of alternating field (AF) demagne-
tization performed on ~220 specimens (16 steps from 0 to 100 mT). AF demagnetization was carried out in an
in-house developed robotized 2G DC SQUID magnetometer (noise level 3 × 10–12 Am2; Mullender et al.,
2016), which provides significantly better results on samples with low natural remanent magnetization
(NRM) intensity.

Paleomagnetic statistical analysis was carried out using the online platform paleomagnetism.org (Koymans
et al., 2016), and all data files are provided in the supporting information. Stepwise demagnetization of the
NRM is displayed in orthogonal vector diagrams (Figure 4, Zijderveld, 1967). Magnetization components were
determined using principle component analysis (Kirschvink, 1980) on approximately five to seven successive
temperature or AF steps in the majority of the specimens. A great circle approach (McFadden & McElhinny,
1988) was used when the samples yielded directions intermediate between those of two (different) compo-
nents with overlapping temperature or coercivity spectra (Figures 4o and 4p). This method iteratively deter-
mines the direction in the plane (great circle) that lies closest to the mean direction of well-determined NRM
directions (set points) and the iterated great circle solutions.

Site mean directions and their statistical properties were calculated from the ChRM directions (Figure 5). A
fixed cutoff (45°) was applied on the virtual geomagnetic pole (VGP) distribution, and corresponding direc-
tions were rejected. The error in declination (ΔDx) and inclination (ΔIx) were calculated separately from
A95 (the 95% cone of confidence of VGPs) following Butler (1992). We derive N-dependent minimum and
maximum values of A95 according to Deenen et al. (2011, 2014). We prefer this approach, since it provides
a value of A95 that is then compared to expected values for sufficient sampling of paleosecular variation
(PSV), that is, A95 must be within the range A95min–A95max.

The directions of the accepted sites are then grouped into localities that has then a mean based on the actual
data (all individual directions) rather than on an average of site means. Since there are nomajor differences in
the number of samples per site, single sites do not bias the final average. Nevertheless, for comparison, we
have added locality means based on site means to Table 1. This provides very similar, final results (i.e., the
amount of rotation) but different and flawed statistical parameters.

To assess whether two distributions share a common distribution, we use the nonparametric coordinate
bootstrap method developed by Tauxe (2010), which uses the actual data. To test the primary origin of the
ChRM, fold tests (following Tauxe & Watson, 1994) were performed on the regional data sets within a general
area and age window.

4. Paleomagnetic Results

Thermomagnetic curves obtained by Curie Balance measurements are shown in Figure 3. The heating curves
of most samples (Figure 3a–3d and 3l) have highest unblocking temperatures ranging 530–580 °C pointing to
the presence of (Ti-poor) magnetite. Often, samples show the presence of pyrite (Figures 3e, 3f, 3i, and 3k)
that transforms to magnetite above 400 °C (Passier et al., 2001). The newly formed magnetite is subsequently
demagnetized/oxidized above 500 °C. In thermal demagnetization experiments, the newly formedmagnetite
creates spurious NRM directions. Occasionally, samples (Figures 3g, 3j, and 3h) show that themagnetization is
very weak and the curves show only the paramagnetic contribution. In these samples, the Curie temperature
is not clear.
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Figure 4. Orthogonal vector diagrams (Zijderveld, 1967) showing representative demagnetization diagrams for all basins. Closed (open) circles indicate projection
on the horizontal (vertical) plane. All diagrams are in a geographic reference frame. For several samples, both alternating field (steps in milli Tesla) and thermal
(steps in degree Celsius) demagnetization diagrams are given to show their similarity. For some sites, we used great circles and calculated great circle solutions
according to McFadden and McElhinny (1988).
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Figure 5. Equal area projection of the ChRM directions for the (a) Beysehir, (b) Yalvaç, (c, d) Ilgın, and (e, f) Altınapa basins. Closed (open) symbols indicate projection
on lower (upper) hemisphere. Large red circles with blue transparent ellipse denote, respectively, the mean directions and the (ΔDx, ΔIx) ellipse. For all basins
except Beysehir the final normal and reversed distributions share a common distribution following the bootstrap coordinate test (Tauxe, 2010). In addition, the
results from the Yalvaç and Altınapa show positive fold tests.
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Equal area projections of themean ChRM directions of all sites are displayed in Figure 5. Details per locality are
given in Figure 6 and Table 1. In many samples, a small viscous component is removed at low temperatures
(100 °C) or at low AFs (~10 mT). A secondary component with a recent direction—close to the geocentric axial
dipole (GAD) field for the locality—is generally removed at temperatures around 200–240 °C (Figure 4).
Thermal demagnetization analysis supports that in many cases the principal magnetic carrier of the ChRM in
samples is carried by (Ti-poor) magnetite (530–580 °C), in line with the Curie balance results. If transformation
of pyrite to magnetite occurs, the results above 400 °C are often obscured in the thermal demagnetizations.

In our analysis of the four basins below, we include previously published paleomagnetic results. Tatar et al.
(2002) reported paleomagnetic data from 5 lavas of the Middle Miocene (~11.8 Ma) Sille volcanics in the east
of the IB and 18 lava sites from the Miocene (~8–12 Ma) Erenlerdağ volcanics in the southeast of the BB.
Platzman et al. (1998) added another three lava sites from the Erenlerdağ volcanics. Using the criterion that
lava sites must have k> 50 (Biggin et al., 2008), we accepted the 5 sites for the Sille volcanics plus 16 + 2 = 18
volcanic sites to represent the Erendağ volcanics. Finally, we used the original data for the Early Miocene
(~23–21.5 Ma) Harami section in the IB reported by Krijgsman et al. (1996).

4.1. Beyşehir Basin

We collected five sites from Pliocene sediments of BB (Table 1; Figure 5a), of which four (BE1, BE2, BE3, and
YL1) have normal and one (YA2) has reversed polarity. The sites gave well-defined components decaying
toward the origin, both with AF and thermal demagnetization. Site BE2 yields a very tight clustering with
A95 = 2.7°< A95min = 4.2°, however, and hence does not represent PSV (spot reading of the field or remag-
netization); this site was therefore rejected.

The single reversed site (YA2) shows a positive reversal test with one of the normal sites (BE3) but not with the
other two normal sites (BE1 and YL1). Although these latter two sites are close to the GAD field, we see no
reason to exclude them from our average considering the consistent and overall good quality of the

Figure 6. Map showing the locations of the sites and their declinations (arrows) with their corresponding ΔDx (colored
shading). The same shading color indicates sites from the same basin or unit (lower and upper Altınapa units), the color
of the arrow refers to the age of the sites: Early Miocene (black), Middle Miocene (red), and Late Miocene to Pliocene (blue).
The mean per basin or unit is given in the larger equal area projections together with all used individual directions
(dots). We also include the results from Harami (Krijgsman et al., 1996).
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demagnetization results. We then combine our new results (N = 37) with previously reported data (N = 18)
from the Upper Miocene to the Pliocene Erenlerdağ volcanics (Platzman et al., 1998; Tatar et al., 2002),
showing that the BB underwent a CCW vertical axis rotation of 9.6 ± 5.8° since the Late Mio-Pliocene.

4.2. Yalvaç Basin

We collected eight sites fromMiddle Miocene fluvio-lacustrine clastic sediments andmarls in the YB, two nor-
mal (YA4 and YA5), five reversed (YA6, YL2, YL3, YL4, and YL5), and one (YA3) that did not yield any interpre-
table results (Table 1 and Figure 5b). Site YA5 yielded normal directions that before and after tilt correction
are close to the recent GAD field, and we suspect recent remagnetization; this site was rejected. Site YL2
yields a very tight clustering with A95< A95min, both in geographic and tectonic coordinates, and therefore
cannot represent PSV; this site was also rejected. Site YL5 shows a tight clustering in geographic coordinates
but passes the A95 criterion in tectonic coordinates and hence was accepted.

The accepted five Miocene sites show both normal (1) and reversed (4) polarities (Table 1). Normal polarity
site YA4 gives demagnetization behavior with a well-defined component decaying toward the origin, a data
scatter within the range expected from PSV, and a rotated component with the expected inclination for the
Miocene paleolatitude of Turkey (Table 1). These criteria support a primary magnetization. The four reversed
sites (YA6, YL3, YL4, and YL5) also provide well-definedmagnetization components that trend toward the ori-
gin of the demagnetization diagrams. The middle Miocene sites of the YB yield a positive reversal test
(Figure 5b), while the fold test is also positive provided we do not include YL5 (Figure 5b). The mean of
the five sites (N = 73) shows a robust and large CW vertical rotation of 42.3 ± 4.5° since the Middle Miocene.

4.3. Ilgın Basin

In the IB, from a total of 13 sites, 11 were collected fromMiddle Miocene sediments and 2 from Early Miocene
sediments. From the two Early Miocene sites, we rejected one site (AC2): it has reversed polarity, but the in
situ mean inclination (I = �56.9°) of the site corresponds to the recent magnetic field, whereas after tilt cor-
rection the inclination of the site is abnormally shallow (I = �27.0°), which would require unrealistically high
compaction. We suspect this site to be remagnetized during a recent reversed interval, consistent with
A95 = 3.2° < A95min = 4.1° (Table 1). We accept the other site from Lower Miocene sediments (IL1), which
has a negligible net rotation (6.6 ± 6.1° CW). This is in excellent agreement with the large data set (N = 82)
of the Harami section (Krijgsman et al., 1996; Figure 5d) that revealed an identical direction (5.9 ± 3.4° CW),
as shown by the Cartesian bootstrap test (Figure 5d). The combined Harami + IL1 results then gives a small
net rotation (6.0 ± 3.0° CW).

From the 11 Middle Miocene sites, we discard 4 sites. Site AC1 has an anomalously low inclination in geo-
graphic coordinates (I = 33.9°) that even becomes shallower after tilt correction (I = 27.6°). The mean direction
in geographic coordinates of site IL4 coincides with the recent magnetic field, whereas in tectonic coordi-
nates, the inclination of the IL4 is too steep (I = 72.3°). We interpret this site as representing a recent magnetic
field overprint, and hence, we reject this site. Since demagnetization diagrams from site IG7 did not yield
interpretable ChRM directions we had to discard this site. Finally, site IG3 yields a very tight clustering with
A95 < A95min, pointing to a spot reading of the field and was rejected.

The remaining seven sites are of normal (IL2, IG1, IG4, IG5, and IG6) and reversed (IL3 and IG2) polarity
Figure 5c) that all pass the Deenen et al. (2011) criteria (Table 1). The combined normal and combined
reversed directions pass the reversal test (Figure 5c) but not the fold test. The combinedmean direction provides
clear evidence that the IB underwent a net CCW rotation of 20.6 ± 3.4° since the Middle-Late Miocene.

4.4. Altınapa Basin

The Altınapa basin (AB) has 17 sites, divided in two groups/units that are constrained by their age: 9 sites from
the Early Miocene lower Altınapa unit and 8 sites from the Middle Miocene upper Altınapa unit (Koç et al.,
2012; Table 1 and Figure 5e).

From the lower Altınapa unit (Figure 5e) we discarded three sites: Site AP3 because it is a recent field over-
print as evidenced by its pretilt direction (D/I = 360°/52°) and its too low inclination (I = 30) after tilt correction;
sites AP7 and AP9 have A95 values below A95min and must be regarded as spot readings of the field or
caused by remagnetization. The other six sites gave both normal (AP1 and AP2) and reversed (AP4, AP5,
AP6, and AP8) polarities that provide a positive reversal test (Figure 5e). The fold test applied to all sites
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provides a tight cluster around 100% unfolding (Figure 5e). The good and consistent results together
(N = 102) document a negligible rotation of 3.6 ± 2.9° CCW after tilt correction. The mean inclination
(46.8 ± 3.1°) is within very reasonable values if we take sedimentary compaction into account.

From the upper Altınapa unit (Figure 5f) we discarded two sites (BR2 and BR3) because of a clearly recent
overprint before tilt correction (on average D/I = 359°/56°) and inconsistent directions after tilt correction
(Table 1). Another three sites (BR1, BR4, and BR5) display a clear post-tilt remagnetization based on anoma-
lously low (I = 20°, I = 33°) or steep (I = 72°) inclinations if we apply tilt correction (Table 1). However, their
combined pretilt directions are very consistent with the combined tilt corrected directions of AP10, UM1,
and UM2; the two distributions share a common distribution according to the coordinate bootstrap test
(Figure 5f). In addition, both distributions also share each a common distribution with the Sille volcanics
(Tatar et al., 2002), while also the combined normal ((UM1 and UM2) and combined reversed (AP10, BR1,
BR4, and BR5) directions share a common distribution. The fold test on our new directions (N = 61) shows
a 95% interval of [52–102%] unfolding for maximum eigenvalues, so it just includes a positive fold test
(Figure 5f). Hence, we joined all directions (N = 61) together with the Sille volcanics (N = 5) to a single distri-
bution for the Altınapa lower unit (N = 66) that shows a considerable CCW rotation of 29.8 ± 4.6°.

5. Discussion

Our new paleomagnetic results of the CTIB reveal that the four studied basins show rotations that differ in
space and time (Figures 6 and 7). Together with previously published paleomagnetic data from the Bey
Dağları, Aksu, Köprüçay, Manavgat, and Afyon regions from Middle Miocene to Pliocene rocks (Gürsoy
et al., 2003; Kissel & Poisson, 1986, 1987; Koç, van Hinsbergen, et al., 2016; Morris & Robertson, 1993; Tatar
et al., 2002; van Hinsbergen, Dekkers, & Koç, 2010), we may now attempt a first-order map-view restoration
of the kinematic evolution of the region since the early Miocene.

Koç, Kaymakci, et al. (2016) suggested that the Central Tauride orocline represents essentially intraplate
deformation, whereby the oroclinal bending is accommodated by the opposite rotation of two limbs of
the orocline (Figure 8) that end in pivot points where they connect to a more or less stable Central
Anatolia. If this is correct, this would require an increasing amount of ~E-W extension from the pivots to
the center of the orocline. The motions of fault blocks along major normal faults in the region (Koç et al.,
2017, 2012; Koç, van Hinsbergen, et al., 2016) accommodate rotations as constrained in this paper; hence,

Figure 7. Correlation of the unconformity bounded lithological units of each basin. The main angular unconformity surface occurred during the Middle Miocene
(~12 Ma). The rotational history is given in the stratigraphy below and above the unconformity surface. Letters a–h along the lithological columns indicate the
position of the paleomagnetic sites given in the legend.
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the aim of our restoration is to assess whether these motions would accommodate the predicted amount of
extension relative to Central Anatolia.

We treat Central Anatolia to the east of the documentedmajor normal faults in the Konya and Ilgın regions as
a rigid block since ~20 Ma. Major rotations and associated shortening occurred largely in the Oligocene to
perhaps earliest Miocene (Advokaat et al., 2014; Gülyüz et al., 2013; Gürer et al., 2016, 2018; Işık et al.,
2003). Some Pliocene E-W extension is accommodated to the east of the CTIB, in the Tuz Gölü basin
(Fernandez-Blanco et al., 2013) and along the Ecemis fault (Higgins et al., 2015; Jaffey & Robertson, 2005),
but documented displacements are small. We therefore assume that the region to the east of the CTIB did
not experience major deformation in the last 20 Myr and evaluate this assumption later in the light of our
discussion. To the west, the orocline is bounded by the Bey Dağları platform, which has been rotating CCW
in Miocene time (Figure 8; Morris & Robertson, 1993; van Hinsbergen, Dekkers, & Koç, 2010), accommodated
along the Aksu and Bucak thrusts (Koç, van Hinsbergen, et al., 2016).

We determine a pivot point of the northern limb of the orocline in the region of Afyon, where Gürsoy et al.
(2003) identified ~20° CW rotation, similar to that documented by Koç, van Hinsbergen, et al., (2016) in the
Köprüçay basin, accommodated since ~20 Ma (Figure 8). The southern limb of the orocline underwent a
post-20 Ma, ~20° CCW rotation and thus predicts a limb size equal to the northern limb, which suggests a
pivot point relative to a stable Central Anatolia in the Mut basin (Figures 9a–9c). This restoration predicts
a maximum amount of post-20 Ma E-W extension around Beyşehir, of up to ~60 km.

Within the CTIB domain, we then identify several fault-bounded blocks, whereby the northern half of the
extensional domain to the east of the orocline is well exposed. The southern half is overlain by young
volcanics, young sediments, or no sediments, and its kinematic history is therefore more challenging to
reconstruct. Our analysis therefore focuses on the northern region, including the Beyşehir, Altınapa, Ilgın,
and YBs. From east to west, we include the Altınapa block bounded by the Konya fault in the southeast
and the Ilgın fault in the west, and an ill-defined fault in the north buried below the Tuzgölü basin. Within
the Ilgın and Aksehir basins, we identify five fault bounded blocks. These are bounded from the
Sultandağları footwall by the major normal faults of Aksehir-Afyon in the southwest, from the Altınapa

Figure 8. Interpolated regional distribution of declination of mean paleomagnetic vectors with cones of 95% confidence
from Neogene rock units adjusted for tectonic tilts. All directions are shown with normal polarity. Red and blue colors
indicate clockwise and counterclockwise rotational domains.
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Figure 9. First-order kinematic reconstruction of the central Tauride orocline and the central Tauride intramontane basins,
cast in the paleomagnetic reference frame of Torsvik et al. (2012). Reconstruction of the Anatolia versus Eurasia follows van
Hinsbergen and Schmid (2012) and Gürer and van Hinsbergen (2018). For reference, we superimpose the reconstructed
Taurides on the outline of the modern geography of Anatolia. We did not incorporate detailed reconstructions of
Beydağları but focus on our study area in the central Taurides instead (a–c). See text for further explanation. Test of our
reconstruction of fault block motion against the paleomagnetic constraints is illustrated as local Apparent Polar Wander
Paths (APWPs) of the Ilgın and Altınapa basins versus the Eurasian APWP. The predicted rotations of the different blocks by
our reconstruction are consistent with the measured paleomagnetic data (d). The evolutionary schematic (not to scale)
cross sections illustrate the complex tectonic setting of the region with crustal scale (e).
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block and stable Central Anatolia to the east by the Ilgın fault, and from each other by the E-W trending
Argıthanı, Balkı, Derbent, and Kızılören faults (Figure 2). The Sultandağları massif is assumed to form a
coherent block, separated from the main Tauride belt that constitutes the northern limb of the orocline by
the Yalvaç-Beyşehir graben, within which the Yalvaç block forms the northernmost part. Finally, the main
Beyşehir basin is modeled as a single block bounded to the east by the Aksehir-Afyon fault zone and to
the west by the Beyşehir fault. To the north, the boundary with the Sultandağları block is diffuse, and the
southern boundary is unconstrained due to overlying young volcanics.

Rotations of these blocks follow from our new paleomagnetic constraints. Rocks in the Ilgın and Altınapa
basins reveal CCW rotations (Figures 6 and 7) for the Middle Miocene deposits (post ~12 Ma), of, respectively,
~21 ± 3° CCW (Ilgın) and ~30 ± 5° CCW (Altınapa upper unit). In both basins, we also obtained paleomagnetic
data from Lower Miocene sediments, which in the Harami section of the IB was constrained at an age of
~22 Ma (Krijgsman et al., 1996). The IL1 and Harami section in the IB reveal a net rotation of only ~6 ± 3° CW.
This suggests that between ~22 and ~12 Ma, the basin (s) must have undergone first a rotation of
27 ± 4° CW followed by the post-12 Ma rotation of ~21° CCW. A comparable history affected the Altınapa
basin whereby the declination retrieved from the Altınapa lower unit is only 4° CW, suggesting a 26° CW
Early-Middle Miocene rotation, followed by a ~30° CCW since the Middle Miocene (Figure 7).

Koç et al. (2017) documented a distinct stratigraphic break in both continental basins—expressed as an
angular unconformity (Figure 7). This unconformity marks the change from clastics to lacustrine limestones
(intercalating with volcanic input in Altınapa; Koç et al., 2012). The Serravallian unconformity therefore
represents the onset of significant subsidence of the Ilgın and Altınapa basins.We therefore correlate this change
in the sense of rotation in the Ilgın and Altınapa basins from regional CW rotation to CCW to this stratigraphic
break and associated unconformity, which has an age of ~12 Ma (Koç et al., 2017, 2012; see Figure 7).

The younger YB was subjected to a net rotation (of ~42° CW) since the Middle Miocene, but older (Early
Miocene) sediments are not exposed (Figure 7). This is approximately 25° more than the rotation of the
northern limb of the orocline, and this additional rotation is thus likely related to a local fault block rotation.
In the YB, a similar Serravallian unconformity was identified (Figure 7), but while the unconformity in the Ilgın
and Altınapa basins marks the change from clastics to lacustrine limestone, in the Yalvac basin it marks the
transition from lacustrine limestones to conglomeratic (boulder to block size) clastics (Koç, Kaymakci, et al.,
2016). From this analysis we infer that all basins likely underwent a ~25° CW rotation between ~20 and
12 Ma, after which the Ilgın and Altınapa basins underwent CCW rotations (of 21° and 30°, respectively).
Finally, from the Beyşehir basin, only Upper Miocene and Pliocene sediments and volcanics are available
for paleomagnetic analysis and show ~10 ± 6° CCW rotation.

All major fault zones bounding and cutting the Yalvaç, Ilgın, and Altınapa basins are clearly extensional (Koç
et al., 2017; Koç, Kaymakci, et al., 2016; Koç et al., 2012; Koçyiğit & Saraç, 2000), and the observed rotations
since the late Middle Miocene must therefore be related to extensional deformation controlled by low- and/or
high-angle normal faults. Our reconstruction now attempts to restore the paleomagnetically documented
rotations while obeying the kinematic boundary conditions posed by the documented faults.

First we restore the IB rotations relative to the Sultandağları footwall at 12 Ma. CCW block rotation
accommodated by normal faulting is modeled by assuming an Euler pole in the southwest of the rotating
domain, whereby the minimum amount of extension is obtained by assuming the pole is located at the fault
interface. Assuming that whole basin to the east of the Sultandağları massif rotated as a rigid block would
generate an unrealistic reconstruction whereby the northern part of the basin restores west of the YB. We
therefore apply a ~20° CCW rotation to each of the smaller fault blocks bounded by the E-W trending normal
faults outlined in Figure 2, around poles in the southwest of the fault blocks. This generates a restored
overlap between the fault blocks and the Sultandağları massif that represents post-12 Ma extensional slip.
This restoration also generates small overlaps between the fault blocks along the E-W trending normal
faults. We restore the double rotation history of the Altınapa block in a similar fashion, leading to overlaps
along the Ilgın fault.

Restoring the 20–12Ma ~25° CW rotation phase follows a similar approach, but the opposite sense of rotation
requires shifting the Euler poles of the fault blocks relative to the Sultandağları footwall to the northwest of
the blocks. Restoring the CW rotations then generates an almost complete overlap between the Sultandağları
footwall and the hanging wall basin blocks of the Altınapa-IB.
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Sedimentological and structural analysis of the YB has revealed that its modern margins are defined by Lower
Miocene basin-bounding normal faults and has always been located between the Sultandağları massif and
the main Tauride axis. To the south, we have no direct constraints on the structure and stratigraphy. We
therefore restore a maximum rotation juxtaposing the western margin of the Sultandağları massif against
the eastern margin of the Taurides west of the Beyşehir fault, equaling the ~15-km width of the Yalvac-
Beyşehir valley. We model the large (in total 42° CW) rotation of the YB as a local rotation in excess of the
regional rotation of the northern oroclinal limb, due to a lateral variation in normal slip along the four
basin-bounding normal faults.

We test our restoration of fault block motions against the paleomagnetic constraints following the recent
approach of Li et al. (2017; Figure 9d). To this end, we computed the Euler pole of each fault block in our
reconstruction relative to South Africa, using the restoration of Anatolian extrusion relative to Eurasia of
van Hinsbergen and Schmid (2012), and the Atlantic Plate Circuit summarized in Seton et al. (2012) updated
with north Atlantic poles of DeMets et al. (2015). We then used paleomagnetism.org (Koymans et al., 2016) to
compute the Global Apparent Polar Wander Path of Torsvik et al. (2012) in the coordinates of our fault blocks
(in 10 Myr intervals) and compare these to our in situ paleomagnetic data from each fault block. All block
restorations are consistent with the paleomagnetic constraints (Figure 9d). In addition, restoration of these
rotations suggests that the basins accommodated simultaneous ~E-W and N-S extension, which is consistent
with extensive field documentation based on small-scale growth faults that show bidirectional extension on
the basin scale in all CTIB basins (Koç et al., 2017; Koç, Kaymakci, et al., 2016; Koç et al., 2012).

The restoration predicts that up to ~50–60 km of E-W extension was accommodated in the center of the
Central Tauride orocline, which is fully consistent with the prediction based on restoring oroclinal bending.
This may be used as an argument to confirm that the orocline formed because of a westward pull, or collapse,
of the Central Taurides in Miocene time as inferred by Koç, van Hinsbergen, et al. (2016). In other words, we
conclude that the CTIB extension is intrinsically related to the formation of the Central Tauride orocline, and
any dynamic explanation, likely involving some role for the Antalya slab, should explain both features
in tandem.

Finally, we remark that our reconstruction suggests that the Sultandağları range has been entirely exhumed
from below the Altınapa-IB in Miocene time. This amounts to ~30–35 km of E-W extension accommodated
along a single normal fault (zone) to which the Sultandağları range was the footwall. This predicts that
the Sultandağları range, which exposes low-grade metamorphic Paleozoic and Mesozoic rocks of the
Geyikdağı and Bolkardağ nappes of the Taurides (e.g., Güngör, 2013), represents a Miocene extensional core
complex, bounded by a top-to-the-east detachment of which the IB represents a supradetachment basin.
Analogous structures may be seen in the core complex, where the Alasehir or Büyük Menderes detachments
bound the central Menderes massif and have exhumed footwalls of similar dimension as the Sultandağları
range (e.g., Çiftçi & Bozkurt, 2010; Gessner et al., 2001; Işık et al., 2003). The Yalvaç-Beyşehir valley may then
be a second-order extensional feature in the doming footwall, equivalent to the Küçük Menderes graben
(Seyitoğlu & Işık, 2009).

Typical core complexes are bound by low-angle detachment faults (Davis & Lister, 1988; Lister & Davis, 1989;
Wernicke, 1981). Such low-angle detachment faults are initially high-angle normal faults and that due to
doming and backrotating of the footwall upon fault motion become low angle (Buck, 1988; Wernicke &
Axen, 1988). The modern range-bounding fault of the Sultandağları range is a high-angle normal fault, the
Akşehir-Afyon fault zone (Figures 2 and 9e). This modern range-bounding normal fault may thus either be
a high-angle normal fault cutting a low-angle detachment, or the range represents a fairly immature stage
of core complex formation (Figure 9e). We stress that the inference that the Sultandağları range represents
a Miocene core complex is a prediction that follows from our map-view restoration (Figures 9a–9c) based
on paleomagnetic and structural constraints from the adjacent basin, and further evaluation of its exhumation
history remains a subject for future field study.

6. Conclusions

In this study, we provide a paleomagnetic study of Miocene continental sediments in the heart and the east-
ern limb of the Isparta angle in southwest Turkey. Our results allow us to determine vertical axis rotations,
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within the context of the tectonic and geodynamic evolution of the Central Tauride region, and we illustrate
the use of paleomagnetic constraints in estimating crustal extension by restoring tectonic rotations. Our main
findings can be summarized as follows.

Four different rotational domains are distinguished in the continental basins that are located in the north and
east of the Isparta angle: (1) The BB in the north recorded ~10° CCW rotation in Late Miocene-Pliocene, (2) the
YB in the northern center shows a net 42° CW rotation since the Middle Miocene, (3) the IB in the east under-
went ~27° CW rotation between the Early and Middle Miocene, followed by ~21° CCW rotation since the
Middle Miocene, and (4) the Altınapa basin has a similar rotational history showing a ~26° CW rotation
between the Early and Middle Miocene, followed by ~30° CCW rotation since the Middle Miocene. We
attribute the additional ~9° CW rotation of the Altınapa basin to be caused by the normal relay ramp faults
in the IB.

The 26–27° CW rotation must have happened before ~12 Ma that is the age of the angular unconformity,
after which the Ilgın and Altınapa basins were subjected to ~20–30° CCW rotation caused by extensional
deformation controlled by low- and/or high-angle normal faults. The large net ~42° CW rotation of the YB
is in excess of the regional rotation between ~20 and 12 Ma that we attribute to lateral variations in normal
slip along the four basin-bounding normal faults.

We attempt a first-order map-view restoration of the kinematic evolution of the region based on our new
paleomagnetic constraints since the early Miocene. Restoring ~25° CW rotation accommodated by the north-
ern limb of the orocline predicts up to ~50–60 km of extension in the core of the orocline and ~30–35 km of
extension in the basins. The reconstruction generates an almost complete overlap between the Sultandağları
footwall and the hanging wall basin blocks of the Altınapa-IB. This predicts that the Sultandağları range that
exposes low-grade metamorphic rocks represents a Miocene extensional core complex. Our study highlights
the view that the Neogene deformation history, and perhaps even active tectonics, may be strongly affected
by the westward retreat of the Antalya slab.
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