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Abstract In many fold-thrust belts, cross section–derived shortening estimates are significantly lower
than predicted based on plate convergence. This has led to controversial hypotheses that shortening
may be largely underestimated due to wholesale underthrusting (convergence without shortening) below
far-traveled continent or ocean-derived nappes. The Late Cretaceous-Eocene Taurides fold-thrust belt
(southern Turkey) may contain a highly incomplete shortening record of convergence likely caused by
wholesale underthrusting. To estimate this underthrusting, we calculate convergence across the belt using a
map-view palinspastic reconstruction that takes into account major rotations of tectonic units during their
accretion. We use paleomagnetic and fault kinematic analysis, timing of accretion, and Africa-Eurasia
convergence to constrain our reconstruction. Our paleomagnetic results confirm an ~40° clockwise vertical
axis rotation of the Geyikdağı nappe that forms the core of the belt, which we interpret is accommodated by
a lateral gradient in underthrusting on faults structurally above and below the Geyikdağı nappe. We
reconstruct ~400–450 km of convergence across the Taurides during their accretion. We compare this
predicted convergence to shortening calculated from balanced cross sections, in which we reconstruct a
minimum of 154-km shortening: 57 km within far-traveled nappes, 70-km thrusting of far-traveled nappes
over the Geyikdağı nappe, and 27-km shortening within the Geyikdağı nappe. Shortening in the Taurides
created a significant nappe stack, but the majority of convergence was accommodated by wholesale
underthrusting with barely a trace at the surface, including ~160 km of convergence by rotation of the belt,
and 90–130 km related to missing Africa-Eurasia convergence.

1. Introduction

Estimates of crustal shortening derived from balanced cross sections are widely used in paleogeographic
reconstructions to assess the geodynamic and plate kinematic context of orogenesis (e.g., McQuarrie,
2002; Muñoz, 1992; Woodward et al., 1989). Restoring shortening is for instance useful to assess the role
of continental subduction in fold-thrust belt evolution (Beaumont et al., 2000; van Hinsbergen et al.,
2005; Long et al., 2011; Tate et al., 2015). In absence of constraint, balanced cross sections are recon-
structed with an assumption of minimum shortening (i.e., the distance over which a body of rock
decreased in horizontal width, accommodated by folding and thrusting), meaning that a final shortening
estimate derived from a cross section is a minimum estimate of convergence (i.e., the distance over which
two points move toward each other) taken up across the orogen. Even if all convergence is accommo-
dated and recorded by shortening, the erosion of hanging wall anticlines associated with thrust faults
may lead to an underestimate of shortening in a reconstruction. However, if the décollement horizon coin-
cides with the top of the stratigraphy in a downgoing plate, there is no accretion of rock, and thus no
shortening record—a mode that we here refer to as wholesale subduction, or wholesale underthrusting.
In such settings, the amount of convergence accommodated may be orders of magnitude higher than
the amount of shortening.

In studies focused on, for example, resource exploration, an assumption of minimum shorteningmay be used
to build predictive structural models of the subsurface (e.g., Roeder, 2010). Paleogeographic and plate
tectonic reconstructions, however, aim to portray the entire paleo-Earth surface, and so in these reconstruc-
tions, restoring wholesale underthrusting is essential.
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Oceanic subduction zones often accommodate wholesale underthrusting—it is, in fact, the default mode.
Large amounts of convergence (e.g., resulting in closure of entire ocean basins) may be accommodated
without a volumetrically significant record of shortening by accretion or by shortening in the overriding plate.
For instance, the Indus-Yarlung suture zone in the Himalaya, the Main Zagros Thrust in the Zagros mountain
belt, or the Izmir-Ankara suture zone (IASZ) in Turkey are thought to have accommodated thousands of km of
subduction leaving only narrow zones of mélange in the geological record (Gansser, 1980; Sengör & Yilmaz,
1981; Takin, 1972). Fold-thrust belts also commonly contain far-traveled continent-derived nappes or oceanic
nappes in the form of ophiolites, on which wholesale underthrusting is difficult to quantify (e.g., McQuarrie &
van Hinsbergen, 2013). The most straightforward way to quantify wholesale underthrusting is to compare
estimates of shortening with either independently calculated syn-orogenic plate convergence based on
global marine magnetic anomaly-based plate reconstructions (e.g., Nicol & Beavan, 2003), or paleomagnetic
data (e.g., Huang et al., 2015). In many fold-thrust belts, cross section–derived shortening estimates are
significantly lower than predictioned plate convergence. This has led to controversial hypotheses that
shortening in orogenic belts that are dominated by far-traveled nappes may be largely underestimated.
Such debates are ongoing in for example the Caucasus (Cowgill et al., 2016, 2018; Vincent et al., 2018), the
Pyrenees (Barnett-Moore et al., 2016, 2017; van Hinsbergen, Spakman, et al., 2017; Vissers et al., 2016), and
the Himalayas (Aitchison & Ali, 2012; DeCelles et al., 2014; van Hinsbergen et al., 2012a, 2012b, 2018; van
Hinsbergen, Lippert, et al., 2017; Ingalls et al., 2016; Rowley & Ingalls, 2017). In these examples it has been sug-
gested that thrust faults between continental-derived nappes may either represent cryptic suture zones that
once accommodated oceanic subduction or major wholesale continental subduction. Without an exposed
geological record, the role of wholesale lithosphere subduction—oceanic or continental—remains notor-
iously difficult to unequivocally demonstrate. On the other hand, as exemplified by the limited accretionary
record despite thousands of km of Cenozoic subduction below the Andes (e.g., Oncken et al., 2006; Schepers
et al., 2017), absence of evidence may not be evidence of absence.

In this paper, we aim to assess the role of wholesale underthrusting during the Late Cretaceous to Eocene
age formation of the Taurides fold-thrust belt in southern Turkey (Figure 1). The Taurides consist of far-
traveled nappes that were thrust over the internally thrusted Geyikdağı nappe in Eocene times (McPhee
et al., 2018; Özgül, 1984). A recent balanced cross section across the Taurides by McPhee et al. (2018) docu-
mented a minimum of 55 km of shortening accommodated by thrusting of the far-traveled nappes over the
Geyikdağı nappe. In addition, a minimum of 18 km of shortening was associated with duplexing within the
underlying Geyikdağı nappe, suggesting that at least 73 km of convergence was accommodated across
the belt in Eocene times. There is evidence to suggest that this estimate of minimum convergence is quite
incomplete and that much more convergence may have been accommodated across the belt. First, despite
continuous Africa-Europe convergence, the Taurides appear to have accreted in two short intervals,
separated by a long period without accretion, in Late Cretaceous and then Eocene times. Second, existing
paleomagnetic data suggest that the Geyikdağı nappe was affected by a ~40° clockwise (CW) vertical axis
rotation, during or shortly after its accretion in Eocene time (Cinku et al., 2016; Kissel et al., 1993; Meijers
et al., 2011). The rotation of the Taurides was therefore most likely accommodated on thrust faults associated
with the fold-thrust belt. The CW rotation may have affected a domain up to ~200 km long, based on
structural trends, requiring a lateral gradient in shortening on the order of tens to more than a
hundred kilometers.

The combined constraints on Africa-Europe convergence, timing of accretion of major nappes from the
downgoing to the upper plate, and paleomagnetic constraints on vertical axis rotations allow us to develop
a map view (i.e., palinspastic) restorations of tectonic and paleogeographic evolution (e.g., van Hinsbergen &
Schmid, 2012) independently of balanced cross-section constraints. We may therefore assess the magnitude
of wholesale continental underthrusting for which there is virtually no accretionary record.

For our analysis, we used three independent techniques. First, we collected new paleomagnetic data from
seven new sites in the Geyikdağı nappe to test the robustness and regional extent of the previously calcu-
lated rotations and to determine the occurrence and entity of local rotations within the Geyikdağı nappe.
Second, we collected fault kinematic data on major faults to test whether thrusting was oblique or dip slip
compared to the mapped structural trends in the belt. Third, we built a new first-order balanced cross section
through the Eocene belt, ~80 km to the southeast of the cross section reconstructed by McPhee et al. (2018)
to test for along-strike variations in both structural style and shortening. Finally, we combined our and

10.1029/2018TC005152Tectonics

MCPHEE ET AL. 2



previously published paleomagnetic data within a map view palinspastic reconstruction of the Central
Taurides, from 100 Ma to Present.

2. Geological Setting

Anatolia (modern Turkey) contains a Late Cretaceous to middle Eocene orogen composed of continent-
derived upper crustal nappes, which are locally covered by ophiolites. Accretion of these nappes is

Figure 1. (a) Map of and tectonic units of western and central Turkey based on the MTA 1:500,000 geological map series.
The locations of the Bucak-Seydişehir section (McPhee et al., 2018) and our new Gündoğmuş-Hadim section are
indicated as red lines. (b) Tectonostratigraphy of the major units of western and central Turkey based on van Hinsbergen
et al. (2016) and references therein. (c) Bucak-Seydişehir section of McPhee et al. (2018), showing generalized stratigraphy,
and major structural elements of the belt, which we refer to in later sections.
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thought to be the result of continental and oceanic subduction below an oceanic upper plate lithosphere
(Gürer et al., 2016; Menant et al., 2016; Sengör & Yilmaz, 1981; van Hinsbergen et al., 2016). These nappes
consist of a high-grade metamorphic domain in northern and central Anatolia (e.g., Okay, 1986) and a
nonmetamorphic fold-thrust belt in the south known as the Taurides (e.g., Özgül, 1976; Figure 1). This wide
orogenic system formed by deformation of the eastern part of a microcontinent known as Greater Adria
(Gaina et al., 2013) or the Adria-Turkey plate (Stampfli et al., 1991), which was separated from Eurasia in
the north and from Africa in the south by the Neotethys Ocean.

Closure of the Neotethys Ocean led to the formation of the E-W trending IASZ (Figure 1) and was accommo-
dated by two subduction zones that formed in the Early Jurassic and Late Cretaceous (e.g., Barrier & Vrielynck,
2008; Gürer et al., 2016; van Hinsbergen et al., 2016; Moix et al., 2008; Okay, 1986; Pourteau et al., 2010;
Robertson, 2004; Robertson et al., 2009; Sengör & Yilmaz, 1981). The northern subduction zone was located
along the southern margin of Eurasia since at least the Early-Middle Jurassic and consumed oceanic
Neotethyan lithosphere (Maffione & van Hinsbergen, 2018; Topuz et al., 2013). The southern subduction zone
started in the Late Cretaceous along intraoceanic fracture zones and the passive margin of Greater Adria (e.g.,
Aldanmaz et al., 2009; Çelik et al., 2006; Dilek et al., 2007; Gürer et al., 2016; Maffione et al., 2017; Okay, 1986;
Parlak et al., 2013; Sengör & Yilmaz, 1981; van Hinsbergen et al., 2016). After IASZ formed by closure of the
Neotethys north of Greater Adria, the southern subduction zone remained active and accommodated the
underthrusting of Greater Adria continental lithosphere, resulting in accretion of the nappes that make up
the Anatolian orogen. The IASZ is a simple E-W trending suture and formed by ~N-S Africa-Eurasia conver-
gence (Gaina et al., 2013; e.g., Seton et al., 2012). Despite this first-order simplicity, the modern distribution
of tectonic units and metamorphic belts that formed by progressive accretion to the south of the IASZ varies
strongly along-strike (see van Hinsbergen et al., 2016 for a comprehensive review; Figure 1). This may be a
result of the original shape of the Greater Adriatic margin, and the shape of the Cretaceous subduction zone
that was made up of ~N-S and ~E-W segments roughly following the Adriatic passive margin (van
Hinsbergen et al., 2016; Lefebvre et al., 2013; Maffione et al., 2017; Gürer & van Hinsbergen, 2018).
According to these reconstructions, the area in Central Anatolia investigated in this study formed adjacent
to an ~N-S trending subduction zone.

Three belts of high grade metamorphic rocks are exposed to the north and east of, and structurally above
the Taurides (Figure 1). These represent the deeply underthrusted, metamorphosed, and exhumed rem-
nants of the northern Greater Adria microcontinent. The northernmost of these are the Tavşanlı zone
and the Kırşehir block in western and central Turkey, respectively (Okay, 1986; Plunder et al., 2015;
Pourteau et al., 2018; Sengör & Yilmaz, 1981; Whitney et al., 2003; Whitney et al., 2014), which form the
structurally highest units below the Upper Cretaceous ophiolites and are probably lateral paleogeographic
equivalents. They contain coeval ages of peak metamorphism at ~85 Ma, but the metamorphic rocks in
those zones experienced different pressure and temperature conditions (van Hinsbergen et al., 2016,
and references therein; Pourteau et al., 2018). The Afyon zone is located to the south of the Kırşehir block
and Tavşanlı zone. It is structurally below the Tavşanlı zone and is likely to be structurally below the
Kırşehir block, but no contact is exposed. The Afyon zone consists of continent derived HP/LT rocks that
experienced peak metamorphism at ~65 Ma (Candan et al., 2005; Okay, 1984; Özdamar et al., 2013;
Pourteau et al., 2010, 2013). Metamorphic rocks in the Afyon zone are locally covered by Paleocene-
Eocene marine sedimentary rocks (Candan et al., 2005; Gürer et al., 2016), which demonstrate rapid
exhumation of the metamorphic units. Exhumation was accommodated along extensional detachments
in a long-lived, Late Cretaceous to early Eocene back-arc basin (Gürer, Plunder, et al., 2018) that, when cor-
rected for Eocene and younger vertical axis rotations (Lefebvre et al., 2013; Gürer, van Hinsbergen, et al.,
2018), accommodated E-W extension.

To the south of the metamorphic units, the Tauride fold-thrust belt consists of nonmetamorphic nappes and
forms the southern margin of the Central Anatolian Plateau (Figure 1). The Central Taurides are represented
by a Late Cretaceous to Eocene thin-skinned fold-thrust belt that broadly consists of three major tectonostra-
tigraphic units. In this contribution we will follow the tectonostratigraphic nomenclature of Özgül (1984) and
McPhee et al. (2018). The Bozkır nappes are the highest tectonostratigraphic unit in the Central Taurides and
contain dismembered ophiolite rocks and ophiolitic mélange composed of deformed Triassic to Upper
Cretaceous volcanic and sedimentary rocks (Andrew & Robertson, 2002; Çelik & Delaloye, 2006; Gutnic
et al., 1979; Özgül, 1984).
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The next major units consist of coherent nappes of Paleozoic to Upper Cretaceous platform carbonates
known as the Bolkardağı nappe and the Aladağ nappe. These nappes were likely part of a continuous
platform since Late Permian times with differences in Carboniferous to Permian stratigraphic thickness
caused by basin geometry (Altiner et al., 2000; Özgül, 1976, 1984). The Aladağ nappe is rootless and is
situated to the south of the Bolkardağı nappe. The Bolkardağı nappe is nonmetamorphic at its contact with
the Aladağ nappe in the south and is affected by an increasingly high grade of metamorphism towards the
north where it is known as the Afyon zone (Demirtasli et al., 1984). The Aladağ nappe is covered by a sedi-
mentary mélange that contains sedimentary rocks no younger than Maastrichtian age, which constrain its
accretion at ~66 Ma (Mackintosh & Robertson, 2013).

The Bozkır nappes and the Aladağ and Bolkardağı nappes are thrust for at least 50 km over the now internally
imbricated Geyikdağı nappe, based on the distribution of tectonic windows and klippen (Figure 2). The
Geyikdağı nappe broadly consists of an upward shallowing sequence of Triassic to middle Eocene carbonate
rocks, deposited on Ordovician and older continental basement (Gutnic et al., 1979; Monod, 1977; Özgül,
1976, 1984). The Geyikdağı nappe was deformed by a thin-skinned thrust fault imbricate system that affected
the uppermost Mesozoic carbonates and by a deeper thrust duplex system that incorporates Ordovician and
older basement rocks (McPhee et al., 2018). The Bozkır, Aladağ, and Bolkardağı nappes, which are

Figure 2. Small-scale map showing generalized geological units and major faults and folds in the western central Taurides based on the MTA 1:500,000 geological
map series. The extent of our strip map (Figure 6) is shown by the red dashed box.
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allochthonous, were thrust onto the Geyikdağı nappe in late Lutetian time (middle Eocene, ~41 Ma), as
constrained by the youngest synorogenic (flysch) rocks in the underthrusted Geyikdağı stratigraphy
(Gutnic et al., 1979; Monod, 1977).

There is scarce geological evidence for the tectonic history of the Central Taurides between the Late
Cretaceous accretion of the Aladağ and Bolkardağı nappes, and the middle Eocene accretion and thrusting
of the Geyikdağı nappe. While there is stratigraphic evidence to suggest that the Jurassic and Cretaceous
platform rocks of the Geyikdağı nappe may grade into the Aladağ and Bolkardağı nappes (Altiner et al.,
2000), there are thin slivers of deeper marine sedimentary rocks up to Campanian-Maastrichtian that are
found at the Aladağ-Geyikdağı thrust contact (Mackintosh & Robertson, 2013; Özgül, 1984). Those rocks
may represent an basin that once separated the Aladağ and Geyikdağı platforms.

After the middle Eocene, Africa-Europe convergence was accommodated by oceanic subduction to the
south of the Taurides, meaning that the Beydağları platform and overlying Tauride fold-thrust belt were
located in an upper plate position (McPhee et al., 2018; van Hinsbergen et al., 2010). A slab remnant con-
taining the original lower crustal and mantle lithospheric underpinnings of the Central Taurides may still be
found below southern Turkey and Cyprus (van Hinsbergen et al., 2010; Koç, van Hinsbergen, et al., 2016;
Koç, Kaymakci, et al., 2016; McPhee et al., 2018) and probably is represented by the Antalya slab (Biryol
et al., 2011; van der Meer et al., 2018), which was likely decoupled from the African plate in late
Eocene time.

Following an apparent period of tectonic quiescence in the northwestern Central Taurides, the Eocene fold-
thrust belt was partly refolded and thrusted by a western belt of thrusting that deformed the Geyikdağı and
Beydağları platforms and the overlying Miocene to Pliocene Antalya basin. Miocene and younger thrusting in
the belt was coeval with the formation of a regional system of extensional basins in the Tauride hinterland to
the northeast of the range (Koç et al., 2012, 2017, 2018) and was associated with oroclinal bending of the
Central Taurides (Koç, van Hinsbergen, et al., 2016; Figure 1). Koç, van Hinsbergen, et al. (2016) found that
the orocline formed by a 20°–30° CW rotation of the Köprüçay subbasin in the north, and a 25°–35° anticlock-
wise (ACW) rotation of the Manavgat subbasin to the south, which must have been accommodated by
motion on the Miocene Bozburundağ and Aksu thrusts that are structurally below the orocline because
the Aksu basin to the west did not rotate (Figure 2). In the east, the Miocene oroclinal rotations must have
been accommodated by extension within the Central Tauride basin province in the Tauride hinterland
(Figure 1). The Miocene oroclinal bending therefore affected the Eocene rocks of the Taurides. Koç et al.
(2018) recently made a kinematic restoration of the Miocene extension, shortening, and oroclinal bending,
and we use their results as basis for our restoration of the pre-Neogene deformation history of the
Tauride belt.

The Central Taurides also contain a Late Cretaceous-Paleocene nappe stack known as the Antalya-Alanya
nappes, which were emplaced northward onto the southern margin of the Geyikdağı and Beydağları
platforms. North-verging thrust faults in the Antalya-Alanya nappes are unconformably overlain by
Paleocene nummulitic limestone (Özgül, 1984), indicating that northward thrusting ended long before
south verging and propagating deformation arrived in the Taurides. The emplacement of the nappe stack
is interpreted as the result of westward roll-back and invasion of a subduction zone to the south of the
Taurides (Maffione et al., 2017; Moix et al., 2008). The emplacement and shortening of the Antalya-Alanya
nappes thus did not accommodate Africa-Europe convergence and is unrelated to the shortening versus con-
vergence problem we address in this paper.

The Geyikdağı nappe was affected by a post-Late Cretaceous remagnetization event of presumed Eocene
age: the precise extent of remagnetization is uncertain (Meijers et al., 2011). Paleomagnetic data from
Eocene units of the Geyikdağı nappe indicate a post-middle Eocene ~40° CW rotation (Cinku et al., 2016;
Kissel et al., 1993; Meijers et al., 2011;). Vertical axis rotations are an expression of lateral strain variations.
Elsewhere in the Mediterranean, major rotations in fore-arc settings, as seen in the Taurides, are often accom-
modated by differential back-arc extension (e.g., Cifelli et al., 2007; van Hinsbergen & Schmid, 2012). Back-arc
extension has been reported in Turkey, but it predates the middle Eocene (e.g., Seyitoglu et al., 2017; Gürer,
Plunder, et al., 2018) and therefore predates rotation of the Taurides. The rotation of the belt is therefore most
likely accommodated by thrust faults. The lateral extent of the rotated domain is poorly constrained. There is
no depositional record in the Western Taurides for the late middle Eocene-early Miocene interval, and the
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Antalya basin was not affected by an ~40° CW rotation (Kissel et al., 1993). This constrains the regional
rotation of the Geyikdağı nappe to the time interval between ~40 and 20 Ma.

3. Methods
3.1. Paleomagnetic Data

Oriented paleomagnetic cores were collected from seven sites across the western Central Taurides to test
robustness of the previously reported CW rotation of the Geyikdağı nappe and to evaluate whether differen-
tial rotations occurred between different thrust sheets. We sampled Eocene marine siltstone (2 sites), num-
mulitic limestone (3 sites), and fine-grained marine sandstone (2 sites) from the uppermost sedimentary
units of the Geyikdağı stratigraphy. Paleomagnetic cores (25-mm diameter) were drilled with a petrol-
powered, water-cooled portable drill, and then cut in the lab into standard 22-mm-long specimens. Cores
and bedding plane orientations were measured in the field using a magnetic compass corrected for the local
declination of 5°E. At each site, 5 to 14 samples were collected over an ~20-m stratigraphic thickness to
ensure that paleosecular variation (PSV) of the geomagnetic field was adequately sampled.

Specimens were subjected to stepwise thermal demagnetization in a shielded oven (ASC TD48-SC) at the
paleomagnetic laboratory “Fort Hoofddijk” (Utrecht University). Temperature increments of 20–50 °C were
applied from room temperature up to a maximum of 580 °C. The magnetic remanence was measured after
each demagnetization step on a horizontal 2G DC SQUID cryogenic magnetometer (noise level
3 × 10�12 Am2). Demagnetization data were plotted on orthogonal diagrams (Zijderveld, 1967), and principal
component analysis (Kirschvink, 1980) and statistical analysis were carried out using online software paleo-
magnetism.org (Koymans et al., 2016). The original Zijderveld diagrams, their interpretations, and statistical
analysis from this study are provided in Supplementary file DS01 and can be imported into paleomagnet-
ism.org software. Characteristic remanent magnetization (ChRM) directions were calculated mainly using
best fit lines, but great circles (McFadden & McElhinny, 1988) were also used in samples showing partial
demagnetization. Site mean directions and associated declination (ΔDx) and inclination (ΔIx) errors were
determined using Fisher statistics (Fisher, 1953) applied on virtual geomagnetic poles (VGPs) corresponding
to the isolated ChRMs (Deenen et al., 2011). A fixed 45° cutoff to the VGP/ChRM distributions was applied
before computing the mean values (Deenen et al., 2011; Johnson et al., 2008). Fold tests (Tauxe, 2010;
Tauxe & Watson, 1994) could not be performed due to the low variability of the bedding plane orientation
across the sampled sites. Quality criteria of Deenen et al. (2011) using VGP distribution at the site level were
instead adopted to assess the preservation of the primary remanence in the studied rocks.
Underrepresentation of PSV reflected in a tighter VGP clustering than expected (i.e., A95 < A95min) may
indicate either remagnetization or a nonaveraged record of the geomagnetic field (hence not reliable for
tectonic interpretations). On the other hand, overrepresentation of PSV identified by a larger VGP scattering
than predicted (i.e., A95> A95max) may denote the occurrence of pervasive deformation at the site level or an
inefficient preservation of the remanence.

3.2. Fault Kinematics

The modern structural trend of the belt is oblique to Africa-Eurasia convergence, and so we aimed to see if
this led to oblique thrusting. Fault slip data were collected at major thrust zones within the Central
Taurides (results shown in Figure 5a) to investigate whether faulting within the CW rotated domain was
overall dip slip or oblique. We also collected fault slip data along high angle faults that cut through the
cross section.

We identified major thrusts by stratigraphic separation across faults mapped in the MTA 1:500,000 scale
geological map of the region and by following the structural interpretation of McPhee et al. (2018). At
each location we measured as many individual fault planes with preserved kinematic indicators within
the fault zone as possible. Where possible, offset marker beds were used as sense of slip indicators,
but we largely relied on slickensides as sense of slip indicators, and those included striations, trailed
material, mineral fibers, and steps in the fault plane. We found no exposure of well-preserved slickensides
in two important thrust zones, and so we inferred the transport direction on those faults by measuring
folding in footwall sedimentary rocks. We did not correct fault orientation for bedding dip because the
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thrusts we measured deform shallow to moderately dipping beds. Fault kinematic data are presented as
Angelier plots (Figure 5).

3.3. Cross Section Construction

In this study, we developed a first-order balanced and restored cross section of the Central Tauride fold-
thrust belt. We compared this to a previous section: the Bucak-Seydişehir built by McPhee et al. (2018; sec-
tion Figure 1c), to test for an along-strike variation in structural style and magnitude of shortening in the
Geyikdağı nappe. Since shortening contained in the Antalya-Alanya nappes predated the Eocene (south ver-
ging and propagating) fold thrust-belt that we are interested in and did not accommodate Africa-Europe
convergence but subduction roll-back, which was balanced by upper plate extension (Maffione et al.,
2017), we treated those nappes as a single undifferentiated passive unit and did not include internal short-
ening there in our shortening estimate. To this end, we first surveyed a strip map across the belt, which was
orthogonal to the average bedding strike, and so approximately parallel to the transport direction of the
thrust faults (as constrained by our fault kinematic data; Gündoğmuş-Hadim section, Figure 2). We mapped
lithostratigraphy, and major folds and faults within the strip map area, and also made field observations in
the surrounding region to inform our interpretations. We interpreted thrust faults where we saw lithostrati-
graphic repetitions or evidence for footwall cutoff and hanging wall cutoff relationships. We projected
nearby dip measurements and boundaries onto the chosen cross section using Move 2016.1 and con-
structed our section using dip panels (i.e., domains of similar dip, separated by bisecting axial planes) in
Adobe Illustrator.

The geometry of a thrust fault has a first-order control on hanging wall deformation (e.g., Berger & Johnson,
1980; Woodward et al., 1989). We therefore used exposed hanging wall deformation to predict subsurface
fault geometry. We assumed that steep bedding are caused by an underlying thrust fault ramp, or a stack
of ramps, and so we used changes from shallow to steep bedding to predict the position of underlying thrust
fault ramps (e.g., Suppe, 1983). At each step in building the cross section, we assumed the simplest structural
solution with the least shortening. We reconstructed hanging wall anticlines following the methodology of
Suppe (1983).

We made several simplifying assumptions in the construction of our cross section. We assumed that
deformation was accommodated by layer-parallel shear, which is a plausible mechanism for folding of
bedded limestone rocks. We assumed that volume (and hence area in the plane of the section) was main-
tained during deformation. We assumed that there was no transport of material (hence area change) in or
out of the plane of the section (i.e., plane strain).

We retro-deformed each fault block in our cross section in the structural analysis software Move 2016.1, using
the flexural slip unfolding algorithm that models layer parallel shear. For each fault block we selected a
template bed that was restored to horizontal by rotation, and then other beds and faults were rotated
passively, along with the template bed. This restoration was done relative to a pin line in each fault block,
at a point where we expected minimal layer parallel slip. Our restored section is line length and
area balanced.

3.4. Palinspastic Reconstruction

We used paleomagnetic and stratigraphic constraints on deformation and the modern dimensions of
structural units to build a kinematic restoration of the Central Taurides using GPlates software. As a basis
for our reconstruction, we used the restoration of Greece and western Turkey of van Hinsbergen and
Schmid (2012), the restoration of central and eastern Turkey of Gürer and van Hinsbergen (2018), of
McPhee (2018), and Maffione et al. (2017) and then we incorporated the restoration of Miocene oroclinal
bending of the Central Taurides of Koç et al. (2018). Our reconstruction is incorporated into the global plate
circuit of Seton et al. (2012) with the updated Miocene Atlantic reconstruction of DeMets et al. (2015). We
tested our reconstruction against published paleomagnetic data and our new paleomagnetic data from
the Central Taurides. To this end, we computed the Global APWP of Torsvik et al. (2012) in the coordinates
of our restored blocks. We used the approach of Li et al. (2017) on paleomagnetism.org (Koymans et al.,
2016) to compare our calculated APWP with our in situ data. Our palinspastic reconstruction estimates con-
vergence accommodated across the Taurides fold-thrust belt since the Cretaceous, which we have compared
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with our restored minimum shortening from the balanced cross section to constrain the extent of wholesale
subduction without accretion (and thus shortening) in the Taurides.

4. Results
4.1. Paleomagnetism

The intensity of the natural remanent magnetization (NRM) of the studied samples is relatively low at five
sites (AVD, GUN, IBR, PEM, and SIR), where it ranges between 60 and 6,500 μA/m, and extremely low, between
2 and 35 μA/m, at the remaining two sites (BAS and PIN). Despite these weak NRM intensities, which may be
due to a low concentration of ferromagnetic minerals within the carbonate matrix, stable and measurable
magnetic remanences are observed in most of the samples (Figure 3a). In a few specimens from sites BAS,
PEM, and PIN, no remanence component could be isolated due to the low stability of the remanence.

Two components of magnetization are present in all samples except those from sites PIN and SIR, where pre-
dominantly single component remanences commonly associated with high NRM intensities are present
(Figure 3a). Magnetization decays progressively during the thermal demagnetization up to the maximum
temperature applied at each site (variable between 450 and 580 °C), indicating a wide range of Curie tem-
peratures among the magnetic carriers. This trend is likely produced by the occurrence of different titano-
magnetite gains with a variable Ti content. Only few samples from sites AVD and PEM show a rapid
decrease of magnetization at 300–350 °C, followed by a progressive decrease up to the maximum applied
temperature, which suggests the occurrence of mixtures of titanomagnetite and (likely) iron sulfides.

Where present, secondary (viscous) remanence components were removed at temperatures of 150–180 °C,
with higher temperatures (~300 °C) only required by few samples from site AVD (Figure 3a). High-
temperature ChRM components were calculated using both anchored best fit lines and great circles and were
isolated at around 300–350 °C (sites BAS, PEM, and PIN) as well as at a higher temperature range between
500° and 580 °C (sites AVD, GUN, IBR, and SIR; Figure 3a). Maximum angular deviation values for the isolated
ChRMs are below 10° in most of the samples, except those from BAS where they are up to 20°.

Virtual geomagnetic pole distribution is representative of the PSV scatter (A95min < A95 < A95max; see
Deenen et al., 2011 at all sites except PIN and SIR; Table 1 and Figure 3b). According to Deenen et al.
(2011) representation of PSV in a data set may indicate a primary origin of the remanence. VGP scatter from
sites PIN and SIR is well beyond that produced by PSV alone (likely due to lightening as suggested by the high
NRM intensity and the single component of their remanences), and for this reason, these sites have been
discarded from further analysis.

Site mean directions from the remaining five sites show both reversed (four sites) and normal (one site)
polarity (Table 1 and Figure 3ci). The distribution of these mean directions is fairly antipodal in tilt corrected
coordinates (Figure 3ci), but the result of the reversal test (McFadden & McElhinny, 1990) was indeterminate
due to the occurrence of only one normal polarity site. The five tilt-corrected site mean directions are consis-
tently oriented north-eastward when they are transposed to normal polarity (Table 1 and Figure 3ci). This pat-
tern is even more evident when all the ChRM directions from the five sites are plotted altogether and
transposed to normal polarity (Table 1 and Figure 3ciii). For this reason we have treated the five sites as
belonging to the same population and have calculated 2 mean tilt corrected directions using either the five
site mean values (D/I = 039.0°/33.7°) or the 48 discrete directions from the five sites (D/I = 039.2°/32.6°; Table 1
and Figure 3ciii). In both cases the data scattering resembles that expected from PSV (Table 1), suggesting
that the effect of differential rotations between sites, and by inference, across thrust faults within the
Geyikdağı nappe, is negligible.

The ChRM directions from all sites are slightly more clustered in tilt corrected than in geographic coordinates
(Figure 3ciii) with larger K and smaller A95 values (see Table 1), consistent with a prefolding, likely primary
magnetization. However, due to the low variability of the bedding plane orientations in the study area,
and the result of the fold test (Tauxe & Watson, 1994) is positive, although with maximum eigenvalues
between 51 and 110% unfolding).

Because both the fold test and the reversal test were indeterminate, the primary origin of the remanence in
the studied rocks cannot be tested statistically. However, the in situ directions (both site mean values and
discrete ChRMs) are significantly different from the present-day geocentrix axial dipole field direction at
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Figure 3. (a) Demagnetization Zijderveld diagrams (Zijderveld, 1967) of one representative sample per site shown in in situ coordinates. The solid and open dots
represent projections onto the horizontal and vertical planes, respectively. Demagnetization step values are in °C. The dotted black lines are the best fit lines
computed for the ChRMs. (b) Equal area stereographic projections of the in situ co-ordinate characteristic remanent magnetizations (ChRMs) and associated virtual
geomagnetic poles (VGPs) for the studied sites from the western central Taurides. The full and open dots in the ChRM plots indicate normal and reverse polarity,
respectively. The larger dots in (ii) and (iii), the dotted ellipses, and the gray shaded areas indicate the site mean values, their 95% cones of confidence, and the
uncertainty on declination (dDx), respectively. The smaller circles in the VGP plots indicate the extent of the 45° cutoff (Johnson et al., 2008) applied to the VGPs
before computing the mean values. (c) Equal area stereographic projections of the in situ and tilt corrected (i) site mean directions and associated 95% cone of
confidences and (ii and iii) ChRM directions from sites IBR, PEM, GUN, AVD, and BAS. (iii) ChRM directions transposed to normal polarity. The gray dots are the ChRM
directions rejected after the 45° cutoff (Johnson et al., 2008). The full and open dots indicate normal and reverse polarity, respectively. The gray star is the present-day
geocentrix axial dipole (GAD) field direction at the latitude of the study area. The larger dots in (ii) and (iii), the dotted ellipses, and the gray shaded areas indicate the
site mean values, their 95% cones of confidence, and the uncertainty on declination (dDx), respectively. Mean tilt corrected directions for the study area in the
western central Taurides are shown in (i) and (iii) (see also Table 1).
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Table 1
Paleomagnetic Results From the Western Taurides (Turkey)

Site Lat (°) Long (°) N N45

In situ Tilt corrected

K A95 A95min A95maxD ΔDx I ΔIx D ΔDx I ΔIx

AVD 37.2635 32.3209 10 10 201.6 9.7 �34.1 14.1 200.6 8.9 �27.3 14.5 32.3 8.6 4.8 19.2
BAS 37.3716 31.3919 5 5 191.5 25.2 �16.3 46.9 216.8 28.9 �40.0 36.4 9.3 26.4 6.3 29.7
GUN 36.8854 32.1302 12 12 198.2 12.5 �45.9 13.6 213.2 8.8 �23.4 15.2 26.4 8.6 4.4 17.1
IBR 37.1318 31.5637 12 12 54.2 12.9 42.8 15.3 51.3 9.5 38.8 12.4 25.1 8.8 4.4 17.1
PEM 36.8351 32.0920 9 8 227.7 39.2 �66.1 18.5 236.0 17.2 �35.7 24.1 11.1 16.2 5.0 20.5
PIN* 37.3714 31.4378 5 0 - - - - - - - - - - - -
SIR* 37.9806 31.0661 13 0 - - - - - - - - - - - -
All sites (directions) 48 40 29.3 7.1 42.4 8.6 - - - - 13.1 6.5 2.6 7.5
All sites (directions) 48 45 - - - - 39.2 6.1 32.6 9.1 14.3 5.8 2.6 7.5
All sites (site averages) 5 5 - - - - 39.0 33.7 33.5# 13.4#

Note. For the locality average based on site averages, k and α95 were calculated assuming Fisherian distribution of site-average directions (see Deenen et al., 2011).

Figure 4. Paleomagnetic rotations in the western central Taurides from this study and a compilation of data from Kissel et al. (1993), Meijers et al. (2011), and
Cinku et al. (2016; available in supplementary file DS01). Rotation “cones” reflect ΔDx (uncertainty). Sites PIN and SIR are indicated on the map as points. The
abbreviation “(re)” indicates sites in which rotations were measured in remagnetized rocks.
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the average latitude of the study area, calculated as D/I = 000°/56.5° (Figure 3c), and recent remagnetization is
therefore excluded. Furthermore, the paleolatitude of the studied rocks calculated using the mean value of
D = 039.2° ± 6.1°, I = 32.6° ± 9.1 obtained from all the discrete directions (see Table 1) matches precisely
the expected paleolatitude for the stable African plate in the Eocene according to the apparent polar wander
path (APWP) of Torsvik et al. (2012; Figure 3di). This provides more robust evidence for the primary origin of
the remanence of the studies rocks (Figure 4).

4.2. Fault Kinematic Results

We collected fault slip data from 22 sites across the western Central Taurides (Figure 5). Of those, six sites had
sufficient (i.e., ≥10) compatible fault slip data for paleostress inversion (Figure 6). The sample size is somewhat
limited in terms of the number of fault slip data measured, and the number of sites collected (i.e., we may
undersample some groups of fault slip data), and so we merely use our results to evaluate whether fault slip
on thrusts is essentially parallel to our line of section.

Many of the thrust fault zones we measured contain an apparently subordinate group of fault slip data con-
sistent with a phase of oblique or strike-slip motion, although we do not see an overall trend in the sense of
slip in these data from site to site. At some sites, we also see evidence for changing kinematics on the same
fault plane (e.g., sites PIN and AKC).

We find sites that contain evidence for a single phase of dip-slip thrusting (e.g., sites YAY and MR1) and
sites with multiple incompatible phases of thrusting (e.g., sites URU and UZU). In the northwest part of
the belt, thrust fault zones consistently contain fault slip data consistent with a phase of westward trans-
port, whereas in the southeast part of the belt, thrust faults contain fault slip data consistent with a phase
of southward to south-westward transport. These transport directions closely follow trends of mapped
thrust faults and associated fold axes (Figure 5), which form a SW-convex orocline. We did not find
well-exposed fault zones in the Başgölcűk thrust, or associated with the Kirkavak ridge, and so we mea-
sured fold axes to infer transport direction. In both sites, folding indicated a westward transport direction,
consistent with fault slip data collected in structurally higher thrust faults (i.e., MR1 and PIN).

A series of steep SE-NW-trending strike-parallel faults between Seydişehir and Hadim form amajor fault zone,
which cuts through the Gündoğmuş-Hadim section line. This fault zone cross cuts thrust faults and folds in
the Aladağ and Bolkardağı nappes and therefore postdates Eocene thrusting in the belt. Vertical displace-
ments greater than 1–2 km are evident in many places (e.g., along the Gündoğmuş-Hadim section line).
The Hadim fault cross cuts and displaces a limb of a noncylindrical fold in the Aladağ nappe, weakly con-
straining ~5-km right-lateral strike-slip offset (Figures 6viii and 7a).

We found evidence for phases of normal faulting and right-lateral strike-slip kinematics in those fault zones.
These are likely a result of reactivation, although we did not find strong evidence for relative timing of each
fault set.

4.3. Cross-Section Observations and Interpretations

We present our field data on a small-scale strip map in Figure 6, which is accompanied by a description of
our field observations in Table 2, and photographs of key field relationships in Figure 7. Using these data,
we construct a cross section from Gündoğmuş to Hadim (Figure 8), in which we find evidence for a mini-
mum of 27-km shortening on thrusts within the Geyikdağı nappe, a minimum of 70-km shortening by
thrusting of the Aladağ and Bolkardağı nappes over the Geyikdağı nappe, and a minimum of 57-km short-
ening by thrusting of the Bozkır nappes over the Aladağ and Bolkardağı nappe. In total, we find a minimum
of 154 km of shortening along our cross section of the Central Taurides. Our cross section is not strictly
balanced because our assumption of plane strain is violated by the Hadim strike-slip fault. However, folding
on the northern side of the Hadim fault is cylindrical to the first order (i.e., on the scale of the strike-slip
displacement) and so structures to the north and south of the Hadim fault should match up.

Orogen-scale cross sections are ideally balanced relative to an undeformed foreland (Woodward et al., 1989).
In our new cross section, the Alanya and Antalya nappes likely cover the foreland. The thickness of those
nappes, and therefore the depth to the top of the foreland, is not directly measurable, and so we instead
use the amplitude of the Pembelik monocline to estimate the depth of the foreland.
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The well-exposed Geyikdağı thrust fault imbricate forms the high ridge of the Taurides range and contains a
deformed sequence of Geyikdağı nappe rocks. The thrust fault imbricate is not deeply eroded and contains
preserved hangingwall anticlines, which are a strong constraint on our structural model and limit the amount
of shortening that can be accommodated by thrusting in the Geyikdağı nappe. However, a lack of deep

Figure 5. (a) Site location map of fault kinematic data collected across the western central Taurides, showing fold axes and
faults. (b) Angelier plots of kinematic data collected across the western central Taurides separated by region. The light gray
great circles represent incompatible (outlying) kinematic data. Abbreviations NF, SS, and TF are normal fault, strike-slip
fault, and thrust fault, respectively. LL, RL, and Obl are left lateral, right lateral, and oblique, respectively. Supplementary file
01 contains a table of our fault kinematic data. (i) The northern area. Sites BAS and KIRK are fold axes measured from
meter-scale folds. (ii) The central area. (iii) The southern area of the western central Taurides. Paleostress inversion was
conducted on six sites in WinTensor software (Delvaux & Sperner, 2003). Fault-slip data were converted to P–T axes and then
separated into compatible kinematic populations. AD,MD, and n are average angular deviation from the calculated inversion,
maximum angular deviation from the calculated inversion, and number of data used in the inversion, respectively.
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Figure 6. Our 10-km-wide strip map along the Gündoğmuş-Hadim section line showing generalized stratigraphy and major structures and a simplified stratigraphic
scheme of the rocks exposed within the strip map. The dip data are available on a large scale map in supplementary file 01. Descriptions in Table 2 are demarked
by red roman numerals. Note that on some fault contacts, exposures of Eocene flysch were too small to include on the map.
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erosion also means that lower structural levels have not been exhumed, creating uncertainty in the style of
subsurface structures. We therefore use steep back-dipping dip domains to constrain the position of thrust
ramps in the subsurface.

Thin skinned fold-thrust belts evolve above a shallow dipping planar décollement (e.g., Davis et al., 1983). In
the southwest part of the strip-map, below the Yayla and Pembelik thrusts, we use the observed thickness of
the thrust sheets to estimate the depth to décollement, and find that a 3°NE-dipping décollement best
accommodates the surface structures. This is within the typical range of décollement dips reported for
thin-skinned fold-thrust belts.

Figure 7. Photographs of key field relationships along the Gündoğmuş-Hadim section, which are described in Table 2. (a) Pembelik monocline in the foreground,
midground and background, and its relationship with the Pembelik thrust faults. (b) Mt. Geyikdağı with the Yayla normal fault and the Yayla thrust fault above.
The Paleocene-Eocene sediments below the Yayla thrust fault are internally deformed, but we omitted our interpretation for clarity. (c) In the foreground, the Hadim
fault separates the Aladağ and Bolkardağı nappes, near Dedemli. In the background, thrust faulting of Mesozoic limestone over Upper Cretaceous flysch within the
Bolkardağı nappe. (d) Devonian dolomite of the Aladağ nappe back thrusting over the Bolkardağı nappe.
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Table 2
Descriptions of Key Field Relationships From Southwest to Northeast Along the Gündoğmuş-Hadim Section Line

Location Description

Antalya-Alanya nappes
i) (A)

The Alanya nappes form a continuous cover from the Mediterranean coast to the edge of the Geyikdağı mountain
range. The internal structure of these nappes is poorly known and was formed by at least one pre-middle
Eocene deformation phase, which is demonstrated by Eocene limestones that unconformably cover thrusting
and folding in the Antalya-Alanya nappes (Özgül, 1984).

Pembelik monocline
ii) (A)

A ~1-km-high SW dipping limb of a monocline forms the steep edge of the Geyikdağı mountain range and can be
traced for tens of km along strike. This folded the overlying Alanya nappes and exposed a narrow band of
the underlying Antalya nappes (“Alakırçay” nappe of Özgül, 1976), which appears to be only a few hundred meters
thick and remains very thin for tens of km along strike. On the section line, the flat-on-flat contact between the
Alanya-Antalya nappes is cut by a steep normal fault.

Pembelik thrusts
iii)

The eastern limb of the monocline dips shallowly NE and contains a 100- to 200-m-thick sequence of Upper
Cretaceous to Eocene carbonate and clastic rocks. Those rocks are deformed into a tight thrust imbricate that also
incorporates the upper ~100 m of underlying platform carbonates. The thrust faults sole into a shallow, NE-dipping
flat-on-flat thrust that cuts straight through the SW dipping limb of the monocline. The thrust imbricate abuts against
overthrusted Upper Cretaceous platform rocks along an ~60°NE dipping thrust fault. The overlying thrust sheet was
inaccessible due to steep terrain, and so our mapping is based on observations from a distance, but in general, the
thrust sheet forms a NW-SE trending anticline.

Yayla normal fault
iv) (B)

The east side of the Yayla valley is bound by a steep, ~0.5-km-high scarp of Upper Cretaceous limestone. The
juxtaposition of the Upper Cretaceous platform rocks with Upper Cretaceous-Eocene clastic bearing rocks is locally
ambiguous, but toward the north, along the valley side, a conspicuous, ~45°SW dipping normal fault is visible, as
well as minor normal faults which are strike parallel to the modern erosional scarp. The top of the Yayla normal fault
scarp is marked by an ~50–m-thick sequence of the Upper Cretaceous-Eocene clastic rocks that have the same dip as
those in the footwall of the normal fault.

Yayla thrust fault
v) (B)

Upper Cretaceous rocks have been thrusted on top of Eocene rocks at the top of the Yayla fault scarp. The overlying thrust
sheet contains SW dipping beds of pink Upper Cretaceous limestone that form a hanging wall anticline. The hanging
wall anticline and underlying thrust are cut at an oblique angle by the steep Yayla normal fault that displaces the
fold axis westward across the valley. Nearby, Eocene rocks in the footwall of the thrust are exposed in a reentrant
in the thrust contact. Those Eocene rocks constrain a minimum displacement on the Yayla thrust fault, and a footwall
dip of ~20°E indicates an underlying thrust ramp. The shape of the eastern side of the Yayla thrust sheet is poorly
constrained as the limestones there are massive, and the rocks have been deeply eroded by glacial valleys, and then
covered by thick glacial moraine.

Erigöl area
vi)

The Erigöl area has a much lower relief than the Geyikdağı range. A thick sequence of Eocene flysch and underlying
Upper Cretaceous carbonates are exposed between superficial ridges of glacial moraine and klippen of Aladağ nappe
rocks. The wide outcrop of Eocene rocks suggests that the underlying Geyikdağı platform rocks dip shallowly E,
before plunging below a continuous ridge of Aladağ nappe rocks.

Aladağ nappe
vii)

The lowermost stratigraphy of the Aladağ nappe consists of intensely deformed Devonian to Carboniferous clastic
rocks. Those are overlain by a high relief ridge of internally deformed well-bedded limestone, which dips steeply E,
indicating the position of an underlying thrust ramp in the Geyikdağı platform. Further to the northwest, the dips
become shallow and then steepen to define a tight syncline that contains Permian clastic rocks. The west dipping limb
of that syncline is cut by the Hadim Fault.

Hadim fault zone
viii) (C & D)

The Hadim Fault places the Aladağ nappe next to faulted blocks of the Bolkardağı nappe. The fault cuts through and
displaces a strongly noncylindrical syncline in the Aladağ nappe and defines a lateral displacement of up to ~7 km.
Immediately to the northwest of the section line, the syncline in the Aladağ nappe is well preserved and contains
a W dipping limb that steepens and overturns. A subvertical out of sequence thrust fault, or normal fault, places
the Aladağ nappe next to an ophiolite block. The Hadim fault bounds the eastern edge of the ophiolite, obscuring
the original relationship of the ophiolite and Bolkardağı nappes there. Further to the west along the Hadim fault, the
original contact between the Aladağ nappe and Bolkardağı nappe is preserved, where Aladağ nappe has been thrust
NE over the Bolkardağı nappe.

Bolkardağı nappe (Dedemli)
ix)

The Bolkardağı nappe contains an Upper Cretaceous flysch, a Mesozoic carbonate sequence, and a Paleozoic mixed
clastic and carbonate sequence. Those rocks are affected by intense small scale (i.e., below the resolution of our study)
folding and faulting, and on a larger scale, are cut by a series of thrust faults that thrusted the Mesozoic carbonate
sequence onto the Upper Cretaceous Flysch.

Dedemli syncline
x)

A poorly exposed normal fault places the Bolkardağı nappe next to a klippe of the Bozkır nappes. An internal nappe from
high in the tectonostratigraphy of the Bozkır nappes (see Andrew & Robertson, 2002) is preserved on the klippe and
defines a NW-SE trending syncline.

Bolkardağı nappe (Söğüt)
xi)

The Bolkardağı nappe reappears below the eastern limb of the Dedemli syncline and consists mostly of poorly
exposed Triassic to Devonian clastic and carbonate rocks, which are affected by noncylindrical mesoscale folding.
The northeastern edge of the Bolkardağı nappe is bound by a tectonic window that exposes the underlying
Geyikdağı rocks.
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Table 2 (continued)

Location Description

Hadim window
xii)

A flat-on-flat thrust contact separates Devonian shale of the Bolkardağı nappe from underlying Jurassic-Cretaceous
limestone of the Geyikdağı platform. The limestone is extremely thin (~200 m) compared to the sequence at
Yayla and Pembelik. At the village of Dereiçi, the Jurassic-Cretaceous limestone is absent, and underlying
Cambro-Ordovician shales are in direct contact with the Bolkardağı nappe. The window is ~200 m wide at Dereiçi
but widens to 5 km to the southeast near Hadim. The window defines an open anticline that corresponds roughly
to the Seydişehir anticline of McPhee et al. (2018). To the northwest of the section, the Bolkardağı nappe is absent,
and the Bozkır nappes are in direct contact with the Geyikdağı platform. The northeastern edge of the window is
bound by another klippe of the Bolkardağı nappe that contains Upper Cretaceous to Jurassic carbonates that dip S
onto the underlying Geyikdağı as a hanging wall anticline.

Bolkardağı nappe (Yelbeyi)
xiii)

The exposed Bolkardağı nappe again consists of a poorly exposed Triassic to Devonian mixed sequence of clastic and
carbonate rocks that are intensely affected by noncylindrical mesoscale folding and thrust faults that verge in both a
NE and SW sense. The internal deformation made it difficult to take reliable bedding measurements, and poor exposure
meant that detailed mapping of the Bolkardağı nappe was beyond the scope of this work.

Erenler anticline
xiv)

The most northerly exposure of the Geyikdağı platform is exposed in a tectonic window as a wide, open anticline
which runs NW-SE for ~50 km. Again, both Bozkır and Bolkardağı nappes are in contact with the Geyikdağı along the
window. This window marks the minimum extent of overthrusting of the Aladağ, Bolkardağı, and Bozkır nappes over the
Geyikdağı rocks.

Note. Numeral codes refer to points on the strip map (Figure 5), and the cross section (Figure 7A). Letter codes refer to photographs on Figure 6.

Figure 8. (a) The Gündoğmuş-Hadim balanced cross section, with a generalized internal stratigraphy within the far-traveled nappes. A large-scale version of this
figure is available in supplementary file 01, and shows dip data that we used to construct the cross section. (b) Retro-deformed cross section at the same
scale as the deformed section.
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In the northeast part of strip-map, the far-traveled Aladağ, Bolkardağı, and Bozkır nappes cover Geyikdağı
nappe rocks that are exposed in a series of tectonic windows. Those windows are bound to the northeast
and southwest by synclines, defining a regional-scale anticline in the underlying Geyikdağı nappe. In the
absence of evidence for significant thrusting of the upper few kilometers of Geyikdağı nappe rocks there,
we interpret that as an anticline that enveloped a thrust duplex in the underlying Paleozoic Geyikdağı strati-
graphy. Thick thrust sheets are required to fill space below the anticline while balancing the thrusting toward
the foreland, and so we interpret that the décollement steps down, deep into the Geyikdağı nappe stratigra-
phy. This interpretation minimizes shortening, as well as structural complexity, and is structurally compatible
with the Bucak-Seydişehir section to the north (Figure 1c). The flat-on-flat thrust contact between the far-
traveled nappes and Geyikdağı nappe rocks suggests the far-traveled nappes were likely emplaced before
internal thrusting started to imbricate the Geyikdağı nappe.

In contrast to the Beyşehir-Beydağları section to the north (McPhee et al., 2018), we find no evidence for
Miocene thrusting. Instead, our structural analysis suggests that the emergent parts of the southern
Central Taurides were undergoing extension, most likely in the Miocene.

5. Discussion
5.1. Palinspastic Reconstruction

Our three independent data sets point to a coherent vertical axis rotation of the Geyikdağı nappe since
middle Eocene times. Our first data set consists of paleomagnetic data, which we collected to verify whether
the Geyikdağı nappe rotated as a coherent domain despite diffuse internal thrusting. We find no evidence for
differential rotations between adjacent thrust sheets within the Geyikdağı nappe. Our new paleomagnetic
data confirm previous work from the Taurides (Cinku et al., 2016; Kissel et al., 1993; Meijers et al., 2011;
Piper et al., 2002) in that the Geyikdağı nappe underwent a post-middle Eocene vertical axis rotation of
~40° relative to the geocentric axial dipole (Table 1). The area affected by a rigid block rotation is >100 km
long from northwest to southeast. Structural trends of thrust faults and fold axes suggest that the rotated
domain is up to about 175 km long from the Isparta angle in the far northwest to the Central Taurides. In
our reconstruction, we therefore treat the Geyikdağı nappe as an internally shortened, but coherent domain
affected by an ~40° CW rotation since the middle Eocene.

The absence of extension to the north and east of the Geyikdağı nappe in middle Eocene to early Miocene
time means that rotation of the Geyikdağı nappe required a lateral gradient in shortening. To assess the
magnitude of that shortening, we developed a palinspastic reconstruction (Figure 9a). We first reconstruct
up to 300 km of convergence between the western end of the Geyikdağı nappe and the Aladağ nappe
and 90 km between the eastern end of the Geyikdağı nappe and the Aladağ nappe. As well as Africa-
Eurasia convergence, this includes an additional 100–130 km of convergence between Africa and Central
Anatolia reconstructed by Gürer and van Hinsbergen (2018). Previous kinematic reconstructions of western
Anatolia (van Hinsbergen et al., 2010) suggested that the Beydağları platform accreted to the upper plate
at ~35 Ma (van Hinsbergen et al., 2010; van Hinsbergen & Schmid, 2012). We assume that the western part
of the Geyikdağı nappe moved together with the Beydağları platform until that time. We assume that the
eastern end of the Geyikdağı nappe accreted to the upper plate at ~42 Ma in accordance with the youngest
stratigraphic ages of the Geyikdağı nappe. This reconstruction sequence alone leads to northward increasing
shortening (up to ~160 km) above the Geyikdağı nappe, and southward increasing shortening below the
Geyikdağı nappe (up to ~160 km). This diachronous accretion predicts a CW rotation that fits well with the
paleomagnetic data (Figure 9b) and is kinematically feasible given stratigraphic and paleomagnetic con-
straints. After accretion of Beydağları to the upper plate at 35 Ma, the Taurides are restored as part of
Central Anatolia (Gürer & van Hinsbergen, 2018). Finally, the Taurides are affected by Miocene rotations as
documented by Koç et al. (2018).

Our estimates of convergence are subject to uncertainty. The error bars associated with Africa-Europe con-
vergence are on the order of tens of kilometers (e.g., van Hinsbergen & Schmid, 2012). Shortening estimates
within Central Anatolia rely on paleomagnetic constrains on the magnitude of rotations and structural con-
straints on the size of rotating domains (van Hinsbergen et al., 2018; Gürer & van Hinsbergen, 2018), leading
to uncertainty of several tens of kilometers. Finally, the ages of accretion and end of sedimentation within
nappes may be several million years younger or older due to biostratigraphic uncertainty, corresponding
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Figure 9. (a) Palinspastic map view reconstruction of the Taurides since 100 Ma. Restoration of eastern Turkey follows Gürer and van Hinsbergen (2018), of
intraoceanic subduction follows Maffione et al., 2017, and for Greece and western Turkey follows van Hinsbergen and Schmid (2012) and Gaina et al. (2013).
(b) Comparison of mean declination for paleomagnetic data in the Geyikdağı nappe, with calculated APWPs for Africa, Eurasia from Torsvik et al. (2012), and
Geyikdağı nappe calculated from our reconstruction.
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to tens of kilometers of convergence uncertainty. Although it is hard to estimate precisely, the convergence
estimate may be associated with a ±100-km uncertainty.

We used seismic tomographic images of the mantle below Turkey to test whether the large area consumed
by convergence in our palinspastic reconstruction is reliable. The Eocene age fold-thrust belt (and hence the
“trench”) did not propagate through the Beydağları foreland, meaning that Africa-Europe convergence after
Eocene times was no longer accommodated in the Central Taurides (McPhee et al., 2018). Mantle tomogra-
phy (Biryol et al., 2011; van der Meer et al., 2018) and earthquake hypocenters (Kalyoncuoğlu et al., 2011)
show that the Beydağları foreland is currently underlain by the “Antalya slab” (Biryol et al., 2011; van der
Meer et al., 2018), which may contain the subducted lithospheric underpinnings of the Taurides that became
isolated from African lithosphere upon Eocene accretion of Beydağları to Anatolia (McPhee et al., 2018). In
contrast to the northwestern part of the belt, oceanic lithosphere was likely subducting below the southern
margin of the Central Taurides fold-thrust belt (e.g., McPhee, 2018; Barrier & Vrielynck, 2008). Subduction
there remains active today and is represented by the Cyprus slab (Biryol et al., 2011; van der Meer et al.,
2018). An along-strike change in the type of subducted lithosphere, from oceanic in the southeast, to conti-
nental in the northwest, may have formed a vertical tear that is interpreted between the “Cyprus slab,” and
“Antalya slab” in mantle tomography of the region (Biryol et al., 2011). Hence, the large Paleocene to Eocene
convergence estimates accommodated within the Taurides may be surprising in the light of the estimates of
shortening (Figure 8, McPhee et al., 2018) but are not problematic in the light of seismic tomographic images
of the mantle below Anatolia.

5.2. Shortening and Wholesale Underthrusting Within the Taurides

We now compare the estimates of convergence with the modern architecture of the Taurides fold-thrust belt
and the associated minimum shortening estimates using our new cross section (Figures 7a and 7b) and
previously published Bucak-Seydişehir section (Figure 1c, McPhee et al., 2018). We tested for along-strike
cylindricity within the Geyikdağı nappe and attempted to identify thrust faults that may have accommodated
the CW rotation of the Geyikdağı nappe.

In constructing our cross section we made several assumptions and interpretations that led to uncertainties
in our shortening estimate. First, we did not aim to assess Eocene shortening contained in the Paleocene
Antalya-Alanya nappes. We may therefore underestimate some post-middle Eocene shortening there,
although given that the Alanya nappes form a coherent cover over the underlying Antalya nappes, we
may rule out large scale folding and thrusting. We interpret a shallow dipping décollement, based on
structural style of the belt, as described by McPhee et al. (2018). Deformation measured at the surface is best
reconstructed using a 3° décollement—a steeper or deeper décollement requires more shortening or thicker
thrust sheets. In the northeast part of the belt, we observed a regional scale anticline in the Geyikdağı nappe.
We reconstruct this as an anticline that envelops a thrust duplex and assume no thrusting cuts the upper few
kilometers of Geyikdağı nappe stratigraphy. If this assumption is invalid, wemay underestimate shortening in
the Geyikdağı nappe by a few kilometers. Taking these uncertainties into account, we conclude that the
amount of shortening within the Geyikdağı nappe was probably not much higher than estimated here.

Overall, the structural style that we interpret in the Gündoğmuş-Hadim cross section is cylindrical with that of
the Derebucak thrust imbricate and Seydişehir thrust duplex in the Bucak-Seydişehir cross section (Figure 1c,
McPhee et al., 2018). Some of the main thrust faults may be continuous with those in the Derebucak thrust
imbricate. The Dedemli syncline and Hadim-Erenler anticline seem to be the along-strike continuation of
the Huğlu syncline and Seydişehir anticline, respectively (Figure 1c). We find that there may be ~10 km more
shortening accommodated by thrusting in the Geyikdağı nappe in the Gündoğmuş-Hadim section compared
to the Bucak-Seydişehir section. The far-traveled Aladağ, Bolkardağı, and Bozkır nappes are more extensively
exposed in the Gündoğmuş-Hadim section than in the Bucak-Seydişehir section, and so we constrain much
greater shortening by thrusting of those nappes (70 km) than is possible to the north (50 km). We note that
both are minimum estimates, and the difference does not reflect differences in shortening, but differences
in exposure.

The cylindrical architecture of the belt may be reflected in a group of dip-slip fault slip data that record a
phase of westward and southwest to southward thrusting, as well as in strike-parallel first-order fold axes
and thrust faults, and in paleomagnetic data that demonstrate rotation of a coherent block. Oblique and
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strike-slip fault slip data may show a combination of shortening at an oblique angle to N-S Africa-Eurasia
convergence during or shortly after rotation of the block or may record the accommodation of Miocene
oroclinal bending, which was decoupled from the hinterland part of the belt.

Our analysis reveals that shortening within the Geyikdağı nappe was far too small to have significantly con-
tributed to accommodating the CW rotation. This rotationmust instead have been accommodated by a strain
gradient on faults surrounding the rotated block. The only structures with displacements large enough to
accommodate the rotation are the enveloping basal thrust fault below the duplex and the roof thrust fault
below the Aladağ and higher nappes.

The thrust fault at the base of the Aladağ nappe is a likely candidate to for the roof thrust that accommodated
up to ~160-km convergence associated with rotation of the Geyikdağı nappe (Figure 9a) because there is a
gap between accretion of the Aladağ nappe in Late Cretaceous times and its emplacement onto the
Geyikdağı nappe in middle Eocene time. The only accreted remnants of lithosphere that underthrusted
the belt in that time interval are thin, thrusted slithers of deepwater basin sedimentary rocks of Dipsiz Göl
(Özgül, 1984; Mackintosh & Robertson, 2013). Those rocks may record underthrusting of a basin (likely con-
tinent floored) below the Aladağ nappe, prior to thrusting of the Aladağ nappe over the Geyikdağı nappes.

Our palinspastic reconstruction restores a triangle-shaped underthrusted lithospheric region that we infer
widens to the northwest and may connect to the restored deepwater basin preserved as the Dilek nappe in
western Turkey and Pindos Basin in Greece (Ring et al., 2007; van Hinsbergen et al., 2010; Figure 9). No relics
of the Dilek nappe have been found so far in the Lycian Nappes. Thesemake up the west-Anatolian equivalent
of the Taurides, illustrating that the Dilek nappe underwent wholesale under-thrusting, comparable to the his-
tory we infer for the Central Taurides. Also, deeper tectonic nappes of the Menderes nappes (Gessner et al.,
2001), where stacking was time equivalent to the accretion of the Central Taurides (van Hinsbergen et al.,
2010), still containmost if not all of their stratigraphic sequence (e.g., Ozer & Sozbilir, 2003), which suggests that
they were intact after underthrusting a foreland fold-thrust belt represented by the Lycian Nappes (Figure 1).
The Menderes nappes thus demonstrate that wholesale underthrusting beyond the foreland fold-thrust belt is
a viable mechanism during Tauride orogeny. We predict a north-westward increase in shortening on the roof
thrust from the rotation pole in the southeast of the Taurides. This would have been complimented by a
south-eastward increase in shortening on a floor thrust, from the northwest end of the rotated block.

The floor thrust below the rotated Geyikdağı nappe is hard to place with confidence. A ~40° CW rotationmust
have resulted in differential shortening of many tens of kilometers at the latitude of our cross section and the
Bucak-Seydişehir cross section (McPhee et al., 2018; Figure 1c), for which there is no preserved field evidence.
The structurally lowest thrust in our section is covered by Antalya-Alanya nappes, meaning that it is an unli-
kely structure to have accommodated tens of kilometers of shortening. We predict that such a floor thrust
must crop out to the south of the exposed Geyikdağı rocks, but the location of that thrust remains uncon-
strained in the field. The Antalya-Alanya nappes are associated with Upper Cretaceous ophiolites that were
emplaced onto the Taurides in Late Cretaceous to Paleocene time (Özgül, 1984). Those oceanic rocks are rem-
nants of an ocean basin that once separated the African plate from the Taurides and demonstrate that the
Geyikdağı nappe was bounded to the south by oceanic crust (Barrier & Vrielynck, 2008; Menant et al.,
2016; Moix et al., 2008). This ocean basin subducted after the middle Eocene accretion of the Geyikdağı
nappe to Anatolia and at the latitude of our Gündoğmuş-Hadim section, the sole thrust that accommodated
the CW rotation likely developed into the oceanic subduction zone that consumed the eastern
Mediterranean oceanic lithosphere.

Further to the north, at the latitude of the Bucak-Seydişehir section, the Beydağları platform forms the
foreland of the Eocene belt. On that section line, we predict that the rotation was accommodated by around
45–60 km of shortening on thrust faults structurally below the Eocene fold-thrust belt. That must have
resulted in thrusting of the Geyikdağı and higher nappes over the Beydağları platform rocks and part of
the Antalya nappes. That shortening reshaped the Antalya nappes into narrow ~100 × 30 km long corridor
that stretches northward from the city of Antalya to the city of Isparta (Figure 1).

The palinspastic reconstruction in this study requires a minor modification to the interpretation of the Bucak-
Seydişehir section. There, McPhee et al. (2018) reconstructed Miocene, deeply rooted faults in the frontal part
of the belt, between Beydağları and the Taurides. They had no solid constraint on structure at depth, and so in
their structural model, they assumed the simplest interpretation in which exposed rocks at the surface were
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underlain by their original stratigraphic underpinnings. Those were cross cut by Miocene thrust faults and dis-
placed westward on a décollement. We suggest that instead of the original stratigraphic underpinnings, the
frontal part of the belt is underpinned by underthrusted Beydağları platform rocks. With that modification,
their cross section can viably accommodate the rotation. Miocene faulting may then have simply cross cut
or reactivated the buried structures.

In summary, our combination of palinspastic reconstruction with cross-section balancing shows that the
Taurides fold-thrust belt may contain upper crustal shortening that represent half or even a quarter of the
convergence that was accommodated during nappe stacking. Without evidence from tectonic windows like
the Menderes Massif, wholesale thrusting may go unnoticed if we rely on constraint from balanced cross
sections based on fold-thrust belts alone. Our independent constraints suggest that in the Taurides
wholesale underthrusting was the dominant process during subduction and accretion of the eastern part
of Greater Adria and was interrupted by short-lived periods of perhaps only a few million years of accretion
and rapid topographic growth during carbonate platform underthrusting. In mountain belts that contain far-
traveled nappes, constraints on convergence based on plate circuits and paleomagnetic data are essential
controls on the role of wholesale underthrusting. Balanced cross sections provide useful constraints on
timing of accretion and modern orogenic architecture but may grossly underestimate convergence.

6. Conclusions

To assess the extent to which balanced cross sections provide a reliable estimate of accommodated conver-
gence, we compared balanced cross sections across the Taurides fold-thrust belt in southern Turkey with a
palinspastic, map-view reconstruction. To do this, we collected (i) paleomagnetic data to test previously pub-
lished conclusions that the deepest nappe of the Taurides rotated ~40° CW, (ii) fault slip data to assess
whether shortening in the belt was dip or oblique slip, and (iii) a new balanced cross section to assess
along-strike cylindricity of structures. Our conclusions are summarized as follows:

1 Paleomagnetic and structural geological (fault slip) data, together with the balanced cross section point to
a coherent nappe rotation of the Geyikdağı nappe in post-middle Eocene times, consistent with previous
estimates. Our new paleomagnetic data define a>100 km long NW-SE trending rotated domain and show
that the Taurides rotated as a coherent block, with no resolvable differential rotation within the Geyikdağı
nappe fold-thrust belt.

2 Our balanced cross section across the Central Taurides documents at least 154 km of shortening, which
includes a minimum of 27-km shortening on thrusts within the Geyikdağı nappe, a minimum of 70-km
shortening on thrusts that emplaced the Aladağ and Bolkardağı nappes over the Geyikdağı nappe, and
a minimum of 57-km shortening on thrust that emplaced the Bozkır nappes over the Aladağ and
Bolkardağı nappe prior to 60 Ma. The thrusting in the Geyikdağı nappe has the same style and is equiva-
lent to the documented structure of the northwestern part of the range. We find no evidence for Miocene
thrusting in our study area, in contrast to the northwestern part of the range.

3 Fault zones within the Taurides fold-thrust belt record multiple phases of deformation but consistently
contain evidence for a phase of westward and south-westward thrusting that has been highly oblique
to Africa Eurasia convergence in Eocene to present times.

4 We reconstruct the CW rotation of the Taurides as a collision of the E-W trending Tauride block with a
NW-SE trending trench during northward subduction. The most southeasterly part of the Geyikdağımust
have entered the trench first, and that led to a norward-younging diachronous accretion of the Geyikdağı
nappe to Anatolia, as the Taurides rotated about a pole in the southeast.

5 The rotation of the Geyikdağı nappe was accommodated between a floor and roof thrust. On the floor
thrust, a southward-increasing amount of underthrusting (up to ~160 km) below the Taurides led to
subduction of the Beydağları platform at the northwest end of the Tauride block and subduction of
oceanic lithosphere at the southeast end of the Tauride block. The roof thrust accommodated northward
increasing underthrusting (up to ~160 km) of the Geyikdağı nappe, below the far-traveled Aladağ,
Bolkardağı, and Bozkır nappes.

6 Our map-view palinspastic reconstruction of the rotation predicts that as much as 200 km of convergence
was likely taken up by wholesale underthrusting, for which there is very little record at the surface. Eocene
accretion of crustal units accommodated a minimum 27 km in a few million years, yet built a significant
nappe-stack.
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7 Wholesale underthrusting was likely the dominant process in the accretion of the Tauride platforms and
interpreted intervening basins to Anatolia and led to preservation of a highly incomplete accretionary
record of convergence in the foreland fold-thrust belt. Reconstructions of convergence may use balanced
cross sections as bare minimum estimates but are best combined with quantitative constraints from
paleomagnetic data or plate circuits.

Data Statement

Data in this work are available as supplementary files. Supplementary file 01 contains a large scale version of
our cross section and strip map (Figure 8a, main article) showing dip data we used to construct the section
and a table of fault kinematic data. Supplementary file DS01 contains new paleomagnetic data and a compi-
lation of published data as a file that can be used in the free Web-based tool paleomagnetism.org.
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