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ABSTRACT. The Panthalassa Ocean, which surrounded the late Paleozoic-early
Mesozoic Pangea supercontinent, was underlain by multiple tectonic plates that have
since been lost to subduction. In this study, we develop an approach to reconstruct
plate motions of this subducted lithosphere utilizing paleomagnetic data from
accreted Ocean Plate Stratigraphy (OPS). We first establish the boundaries of the
Panthalassa domain by using available Indo-Atlantic plate reconstructions and resto-
rations of complex plate boundary deformation at circum-Panthalassa trenches. We
reconstruct the Pacific Plate and its conjugates, the Farallon, Phoenix, and Izanagi
plates, back to 190 Ma using marine magnetic anomaly records of the modern
Pacific. Then, we present new and review published paleomagnetic data from OPS
exposed in the accretionary complexes of Cedros Island (Mexico), the Santa Elena
Peninsula (Costa Rica), the North Island of New Zealand, and Japan. These data pro-
vide paleolatitudinal plate motion components of the Farallon, Phoenix and Izanagi
plates, and constrain the trajectories of these plates from their spreading ridges
towards the trenches in which they subducted. For 83 to 150 Ma, we use two inde-
pendent mantle frames to connect the Panthalassa plate system to the Indo-Atlantic
plate system and test the feasibility of this approach with the paleomagnetic data. For
times prior to 150 Ma, and as far back as Permian time, we reconstruct relative and
absolute Panthalassa plate motions such that divergence is maintained between the
Izanagi, Farallon and Phoenix plates, convergence is maintained with Pangean conti-
nental margins in Japan, Mexico and New Zealand, and paleomagnetic constraints
are met. The reconstruction approach developed here enables data-based reconstruc-
tion of oceanic plates and plate boundaries in the absence of marine magnetic anom-
aly data or mantle reference frames, using Ocean Plate Stratigraphy, paleo-
magnetism, and constraints on the nature of circum-oceanic plate boundaries. Such
an approach is a crucial next step towards quantitative reconstruction of the currently
largely unknown tectonic evolution of the Earth's oceanic domains in deep geological
time.
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introduction

Understanding the dynamics of plate tectonics – the size and shapes of plates,
their motions, and what is driving these motions – is cornerstone in understanding
Earth's evolution and behavior. For mantle dynamics, the rate of motion of tectonic
plates relative to the underlying mantle, as well as sudden changes in these motions, is
of particular interest (Torsvik and others, 2010). Present-day plate motions can be
obtained from earthquake focal mechanisms and GPS data, but for plate motion
changes and evolution of mantle dynamics throughout Earth's history, we rely on
plate reconstructions. Reconstructing tectonic plates requires knowledge on the past
location and evolution of their plate boundaries – spreading ridges, transforms, and
subduction zones, of which the vast majority is located within ocean basins. However,
because oceanic lithosphere has a limited lifespan at the Earth's surface and is eventu-
ally lost to subduction, reconstructing plates and plate boundaries is increasingly chal-
lenging for deeper geological time: for the Jurassic, around 60% of the planet's
surface consisted of lithosphere that is no longer present today, of which the vast ma-
jority was oceanic (Torsvik and others, 2010). Deep-time plate tectonic reconstruc-
tions rely therefore primarily on structural geological, paleontological, and
paleomagnetic data from the continents. Such reconstructions (Stampfli and Borel,
2002; Torsvik, 2003; Scotese, 2004; Li and others, 2008, 2019; Nance and others, 2014;
Pisarevsky and others, 2014) classically portray the distribution of continents through
geological time and identify plate boundaries when they are located within or adja-
cent to continents. However, plates and plate boundaries within oceanic domains
remain mostly unreconstructed, or are inferred only conceptually.

With the advent of free, user-friendly plate reconstruction software (particularly
GPlates, www.gplates.org, Boyden and others, 2011; Gurnis and others, 2018; Müller
and others, 2018), the last decade has seen a surge in deep-time dynamic plate motion
models in which intra-oceanic plate boundaries and their evolution are portrayed in
kinematically feasible, albeit still poorly constrained scenarios (Domeier and Torsvik,
2014, 2019; Domeier, 2016, 2018; Matthews and others, 2016; Merdith and others,
2017; Müller and others, 2019; Young and others, 2019). Such full-plate reconstruc-
tions are now available as input for numerical modeling studies and promise break-
throughs in our understanding of mantle dynamics and its evolution through time
(Coltice and Shephard, 2018). However, it also makes the development of new data-
based approaches to reconstruct lost oceanic plates and intra-oceanic plate bounda-
ries particularly urgent.

Data on past tectonic motions of subducted oceanic plates may be collected from
sparse remnants of these plates, preserved in accretionary orogens. Such remnants
represent assemblages of rocks that once formed the upper part of oceanic [or
(micro-)continental (van Hinsbergen and Shouten, 2021)] lithosphere that was
scraped off and accreted during subduction. Records of these plates are preserved in
rocks that are often fragmented, intensely deformed, metamorphosed, and highly
incomplete, yet accretionary orogens preserve information on the tectonic history of
oceanic plates from billions of years of Earth's history (Windley and others, 2007;
Cawood and others, 2009, 2018; Xiao and others, 2009; Kusky and others, 2013). In
this study, we aim to obtain quantitative data for kinematic reconstructions of lost oce-
anic plates and plate boundaries from such accretionary orogens. We hereby focus on
the Panthalassa Ocean that in early Mesozoic time surrounded the supercontinent
Pangea.

Marine magnetic anomalies of the Pacific Plate (fig. 1), which underlies the de-
scendant of the Panthalassa Ocean, the Pacific Ocean, reveal that the Panthalassa
Ocean was once underlain by at least three major oceanic plates – Farallon, Phoenix,
and Izanagi. The Pacific Plate originated around 190 Ma at a triple junction between
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these three plates, was surrounded by ridges, and grew upon the subduction and de-
mise of Farallon, Phoenix and Izanagi (Larson and Chase, 1972; Larson and Pitman,
1972; Boschman and van Hinsbergen, 2016). Here, we aim to establish a data-based,

Fig. 1. (A) The Pacific Ocean, its modern plate configuration, and isochrons [from Wright and others
(2016)]. (B) Latest Jurassic Panthalassa Ocean, including the young and growing Pacific Plate (in blue) and
its conjugates, the Farallon, Izanagi, and Phoenix plates. Reconstruction of North/South America and Africa
from Torsvik and others (2012); Europe/Asia from Müller and others (2016) and Domeier and Torsvik
(2014).
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quantitative reconstruction of the plate tectonic evolution of the Panthalassa Ocean
and estimate plate motions relative to the well-reconstructed Pangea plates. To this
end, we use stratigraphic and geochemical data, as well as new and previously pub-
lished paleomagnetic data, from Permian-Cretaceous rock assemblages that were
scraped off the subducting Farallon, Phoenix, and Izanagi plates, and accreted in oro-
gens exposed on Cedros Island (Baja California, Mexico), the Santa Elena Peninsula
(Costa Rica), the North Island of New Zealand, and Japan.

reconstructing panthalassa plates: outside-in, inside-out,

bottom-up, and from accreted remnants

Reconstruction of the lost plates of the Panthalassa Ocean is possible from four
different angles: (1) Outside-in: Reconstructing the changes in the total area occu-
pied by Panthalassa lithosphere follows from reconstructing Pangea break-up and pre-
ceding assembly. The estimate of net area change of the Panthalassa Ocean can
further be refined by correcting for plate margin deformation. In most cases, such de-
formation is restricted to a few hundred kilometers (for example, extension in the
North American Basin and Range province (McQuarrie and Wernicke, 2005), or
shortening in the Andes (Eichelberger and McQuarrie, 2015; Schepers and others,
2017), and is thus only of secondary importance. In other cases, however, such defor-
mation modified the area of the Panthalassa domain by many thousands of kilometers
(for example, Cenozoic backarc extension in the southwest Pacific region (Seton and
others, 2016; van de Lagemaat and others, 2018a) and is important to take into
account.

(2) Inside-out: Formation of oceanic lithosphere at ridges within the Panthalassa
domain is reconstructed from marine magnetic anomalies and fracture zones pre-
served on the Pacific Plate. These spreading records provide the detailed kinematic
history of plate pairs whose ridges with the Pacific still exist (Juan de Fuca, Cocos,
Nazca, West Antarctica, fig. 1A), and provide half-spreading records of plates that
were conjugate to the Pacific Plate, but have now been subducted, including the con-
ceptual Izanagi, Farallon and Phoenix plates (fig. 1B). The oldest Pacific ocean floor
dates back to ;190 Ma (Lancelot and Larson, 1975; Hilde and others, 1977;
Engebretson and others, 1985). The Pacific spreading records show that since ;83
Ma, the Pacific plate shared a ridge with the (West) Antarctic Plate, tying Pacific plate
motions to the Indo-Atlantic plate circuit (Doubrovine and Tarduno, 2008;
Doubrovine and others, 2012). Prior to 83 Ma, however, the Panthalassa plates were
entirely separated from the Indo-Atlantic plate circuit by subduction zones.
Nonetheless, some fragments of lithosphere that formed within the Panthalassa do-
main escaped subduction and are currently underlying the Caribbean, Aleutian, and
Philippine Sea basins (fig. 1A). These lithospheric fragments provide geological and
geophysical information on spreading history and post-spreading plate motion that
may aid the inside-out reconstruction, but all of these fragments are Jurassic or
younger in age (Pindell and Dewey, 1982; Hall, 2002; Boschman and others, 2014,
2019; Wu and others, 2016; Vaes and others, 2019).

In addition to spreading records that reveal relative plate motions, data on abso-
lute plate motions of the Pacific Plate are available in the form of fixed hotspot refer-
ence frames. The latest version of these, by Torsvik and others (2019), estimates
absolute plate motions of the Pacific Plate back to 150 Ma. Even though changes in
inter-hotspot distances in the Pacific have been demonstrated (Wessel and Kroenke,
2009; Konrad and others, 2018), for pre-Late Cretaceous times, the Torsvik and others
(2019) frame provides the best available constraint on absolute plate motions of the
Panthalassa plate system. For times prior to 150 Ma, paleomagnetic data are available
from ODP sites 801B and 801C (Leg 129), studied initially by Steiner and Wallick
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(1992) and Wallick and Steiner (1992), and later by Fu and Kent (2018). These stud-
ies yielded paleolatitudes for the drill location (currently at 18.5³N) between 10³N
and 20³S for Bathonian-Maastrichtian times. In our analysis, we use the data from Fu
and Kent (2018), who analyzed samples from a middle Bathonian-late Valanginian
(;167–133 Ma) sequence of red radiolarian chert, mudstone and basalt, dated by
radiolarian biostratigraphy (Matsuoka, 1992, 1995), yielding southern hemispheric
paleolatitudes between 0 to 20° for six ages (tables 1 and 2). Furthermore, based on
consistent near-north declinations, Fu and Kent (2018) concluded that there has
been no vertical axis rotation of the Pacific Plate since the middle Jurassic. The inside-
out approach, including spreading records, mantle frames, and paleomagnetic data,
provides data back to;190 Ma.

(3) Bottom-up: Seismic tomographic images of the mantle reveal the presence of
positive wave speed anomalies, which may be interpreted as subducted lithosphere.
Systematic correlations have shown that deeper seismic wave speed anomalies corre-
late well with older geological records of subduction (van der Meer and others, 2010,
2018; Butterworth and others, 2014). Furthermore, although slabs may migrate for-
ward, backward, or undergo trench-parallel drag over distances of .1000 km during
active subduction (Schellart, 2017; van de Lagemaat and others, 2018a), there appears
to be no systematic horizontal offset of slabs relative to one another after their break-
off from surface plates (Domeier and others, 2016). Modern mantle structure may
thus be used to determine the absolute location of past subduction zones, and this has
in recent years become a tool to reconstruct the positions of former intra-oceanic sub-
duction zones within the Panthalassa Ocean whose geological records have been sig-
nificantly displaced after subduction termination (van der Meer and others, 2012;
Sigloch and Mihalynuk, 2013; Wu and others, 2016; Domeier and others, 2017;
Boschman and others, 2018b; Vaes and others, 2019; Clennett and others, 2020). The
deepest slabs, located near the core-mantle boundary, correlate with subduction zones
that were active up to ;250 Ma ago (van der Meer and others, 2010, 2018), implying
that the bottom-up approach is restricted to Mesozoic and younger times.

(4) From accreted remnants: During subduction, rocks may get transferred from
the subducting plate to the overriding plate, thereby preserving remnants of sub-
ducted plates. Such accreted rocks derived from oceanic lithosphere can be described
as parts or entire sequences of ‘Ocean Plate Stratigraphy' (OPS), a concept developed
by the Japanese micropaleontologist Yukio Isozaki (Isozaki and others, 1990).
Generally, OPS represents remnants of oceanic ridges, rises, seamounts, intra-oceanic
arcs, and occasionally, the abyssal plain (Alvarez and others, 1980; Shibuya and
Sasajima, 1986; Isozaki and others, 1990; Hagstrum and Sedlock, 1992; Hagstrum and
Murchey, 1996; Oda and Suzuki, 2000; Ando and others, 2001; Kodama and others,
2007; Kasuya and others, 2012; Kirschvink and others, 2015). The preservation of OPS
is rare; vast segments of the circum-Pacific subduction zones are devoid of accreted
rock units. There are no accretionary records from Cenozoic subduction at the
Aleutian, Kuriles, Izu-Bonin-Marianas, Tonga-Kermadec, Antarctic Peninsula, or (cen-
tral-southern) Andean trenches. Moreover, where such accreted materials are present,
such as in Japan, accretion events may be separated by extended periods of non-accre-
tion or subduction erosion (Isozaki and others, 1990, 2010). Nevertheless, where pres-
ent, OPS provides invaluable information on motions of partly or fully subducted
plates.

Ocean Plate Stratigraphy consists, in its most complete form, of magmatic base-
ment, cherts or limestones, hemipelagic sediments, and tuffaceous and turbiditic
deposits. If the magmatic basement rocks have a MORB geochemical signature indi-
cating formation at a mid-ocean ridge, the OPS sequence represents the full journey
of oceanic lithosphere from a spreading ridge, through the open ocean (where cherts
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are deposited), towards a trench (when first hemipelagic, and later turbiditic trench
fill sediments are deposited). When OPS basement contains island arc, ocean island
basalt, or large igneous province geochemical signatures, the age of the originally
underlying magmatic basement may be considerably older, and the sequence reflects
the journey from an intra-oceanic arc, seamount, or oceanic plateau towards a trench
(Isozaki and others, 1990).

The aim of our study is to constrain past motions of the main lost plates of the
Panthalassa Ocean. To do so, we focus on OPS sequences derived from the Farallon,
Phoenix and Izanagi plates that formed at central Panthalassa spreading ridges, far
from the continental margins. Previous geological and seismic tomographic studies
have shown that large parts of the circum-Pacific accretionary orogens, for example in
Canada, Alaska, and far-east Russia, did not form by simple oceanic subduction below
the continental margins. Instead, these orogens contain remnants of multiple volcanic
arcs and oceans that formed at simultaneously active Mesozoic subduction systems in
the eastern and northern Panthalassa Ocean (Nokleberg and others, 2000; Johnston,
2001; Monger and Price, 2002; Sigloch and others, 2008; van der Meer and others,
2012; Sigloch and Mihalynuk, 2013; Domeier and others, 2017; Vaes and others,
2019). Discerning Izanagi- or Farallon-derived records from these orogens is challeng-
ing, and we therefore do not use OPS materials from these regions – we refer the
reader to Nokleberg and others (2000), Monger and Price (2002), and Johnston
(2008) for discussions on the tectonic history of these regions. Similarly, the region of
intersection of the Tethys and Panthalassa domains in Southeast Asia has a complex
subduction and accretion history and is outside of the scope of our current paper –
we refer the reader to Hall (2002), Zahirovic and others (2014), Wu and others
(2016), and Advokaat and others (2018) for a range of views on the tectonic evolution
of this region.

In this study, we focus on Permian to Cretaceous OPS sequences that accreted
during Jurassic and Cretaceous times to circum-Pacific continental margins on Cedros
Island (Baja California, Mexico), the Santa Elena Peninsula (Costa Rica), the North
Island of New Zealand, and Japan (fig. 2). Overriding plate deformation in these
regions is reconstructed in previous studies: we use Boschman and others (2014,
2018a, 2018b) and McQuarrie and Wernicke (2005) for a reconstruction of the tec-
tonic history of Mexico and Costa Rica, van de Lagemaat and others (2018a) for New
Zealand, Vaes and others (2019) for Japan, and Matthews and others (2016) and
Domeier and Torsvik (2014) for the China block motions (fig. 1B). To estimate paleo-
latitudes when using paleomagnetic data, we place the relative plate motion recon-
structions in the paleomagnetic reference frame or Torsvik and others (2012).

tectonic setting, available paleomagnetic data, and sampling of

selected circum-pacific ops

Eastern Panthalassa: Accreted Remnants of the Farallon Plate

Setting.—Relics of the Farallon Plate, which occupied the eastern Panthalassa
Ocean, can in theory be expected along the western margin of the Americas.
However, throughout the Mesozoic-Cenozoic, the South American margin experi-
enced subduction erosion rather than accretion, and except for accreted oceanic frag-
ments in the northernmost Andes of Colombia and Ecuador related to Late
Cretaceous collision with the Caribbean Plate, no accretionary prism or subduction
complex containing Farallon-derived material is present in South America (Kennan
and Pindell, 2009; Horton, 2018; Montes and others, 2019). Moreover, as noted
above, we do not consider the accretionary records related to the complex subduction
history of the northeastern Panthalassa Ocean, that is, the records of the Canadian

through Paleomagnetic data from circum-Pacific accretionary Orogens 915



and US sectors of the North American Cordillera. Accreted Farallon records for which
the tectonic history of the overriding plate is reasonably well known are exposed along
the western margins of Mexico and Central America.

The geology of Mexico and northern Central America contains records of sub-
duction spanning Triassic-present day times. The active Cenozoic volcanic arc is inter-
preted as a long-lived continental margin arc related to subduction of Farallon and its
daughter plates (Cocos, Rivera) (Ferrari and others, 2007). Older records of Triassic-
Cretaceous arc magmatism are exposed in the Guerrero terrane of mainland Mexico
(Centeno-García and others, 2003, 2008; Talavera-Mendoza and others, 2007), in the
Peninsular Ranges Batholith of Baja California (Johnson and others, 1999; Ortega
Rivera, 2003), and in the Chortís and Mesquito terranes of northern Central America
(Flores and Gazel, 2020). The Guerrero terrane is separated from mainland Mexico
by the Guerrero terrane suture belt (GTSB), including sheared and folded meta-sedi-
mentary rocks, Tithonian-Barremian felsic dikes and lavas, and Aptian-Cenomanian
intraplate-like and mid-ocean-ridge basalts, interpreted as the remnants of the oceanic
Arperos Basin (Martini and others, 2011, 2014). There is debate on the origin of the
Arperos Basin: some authors argue that the basin represented a.1000 km wide ocean
(‘Mezcalera'), making the western terranes of Mexico exotic and potentially far-trav-
eled to North America (Dickinson and Lawton, 2001; Hildebrand, 2013; Sigloch and
Mihalynuk, 2013; Clennett and others, 2020). Detailed field geological studies
of Mexican geology, however, showed that the Guerrero arc is built on a Triassic

Fig. 2. Sampling locations from Kodama and others (2007) (Waiheke Island), Kirschvink and others
(2015) (Kamura), Shibuya and Sasajima (1986), Ando and others (2001), Oda and Suzuki (2000)
(Inuyama), and this study.
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accretionary prism and blueschist-bearing subduction complex (the Arteaga
Complex), which contains detrital zircons matching the signature of mainland
Mexico (Centeno-García and others, 2011), and that the Tithonian-Barremian felsic
dikes and lavas of the GTSB contain Paleozoic and Precambrian inherited zircons
(Martini and others, 2011). These studies thus rather indicate that the Guerrero ter-
rane was located at the North American continental margin in Triassic times, and that
the Arperos Basin opened and closed during the Late Jurassic to mid-Cretaceous as a
narrow back-arc basin above a long-lived and continuous eastward-dipping subduction
zone (Cabral-Cano and others, 2000; Elias-Herrera and others, 2000; Centeno-García
and others, 2008, 2011; Martini and others, 2011; Fitz-Díaz and others, 2018).
Subduction complex rock assemblages similar to those of the Arteaga complex (blues-
chists, serpentinites) are exposed in westernmost northern Central America reaching
as far south as northern Costa Rica (Rogers and others, 2007; Baumgartner and
others, 2008). Boschman and others (2018b) argued that seismic tomographic images
revealing a continuous slab connected to the actively subducting Cocos Plate at the
Middle America trench and reaching all the way to the lowermost mantle below the
Atlantic (Grand and others, 1997; Bijwaard and others, 1998), are consistent with con-
tinuous subduction below the southern part of the North American continent since
the Triassic. In addition, Boschman and others (2018a, 2018b) presented paleomag-
netic data from the Guerrero terrane and from the Triassic Vizcaíno SSZ ophiolite
and its Jurassic sedimentary cover exposed east of the Peninsular Ranges Batholith in
Baja California, and showed that these western Mexican terranes have had a paleolati-
tudinal plate motion history equal to that of the North American Plate. As the paleola-
titude of the Mesozoic overriding plate terranes below which the Farallon Plate
subducted is therefore known, remnants of the subducted Farallon Plate accreted to
this segment of the North American continental margin, such as exposed on Cedros
Island (offshore of the Vizcaíno Peninsula of Baja California) and on the Santa Elena
Peninsula of Costa Rica, are used in reconstructing plate motions of the Farallon
Plate.

Previous paleomagnetic results, and sampling: Baja California and Costa Rica.—On
Cedros Island (fig. 3), a blueschist-bearing serpentinite-matrix mélange is exposed
that contains ;1 to 50 m scale blocks of (meta-) basalt, chert, limestone, and upper
Lower Cretaceous (;105 Ma) turbiditic sedimentary rocks (Rangin, 1978; Sedlock,
1988). This mélange is part of an assemblage of Mesozoic subduction-related rocks,
including a Triassic (;220 Ma) supra-subduction zone (SSZ) ophiolite, Jurassic arc
magmatic rocks, and Cretaceous forearc deposits exposed throughout the Vizcaíno-
Cedros region of central Baja California (Kimbrough and Moore, 2003). Boschman
and others (2018b) recorded paleolatitudes from these SSZ ophiolitic and overlying
sedimentary rocks.

Hagstrum and Sedlock (1990) sampled pillow basalts and chert beds from a con-
tinuous section of pillow basalts, ;40 m of red radiolarian ribbon cherts and ;250 m
of thin-bedded turbidites exposed within the mélange on southeastern Cedros Island
(fig. 3). Based on radiolarian biostratigraphy, the cherts were shown to represent a
long, condensed stratigraphic section spanning the Upper Triassic to the Lower
Cretaceous (Sedlock and Isozaki, 1990). Initially, Hagstrum and Sedlock (1990) con-
cluded that these rocks were remagnetized, and that no original magnetic signal was
present. However, later re-analyses of the chert samples (Hagstrum and Sedlock,
1992) yielded a stable high-temperature (600–680°C) component in 13 of 101 sam-
ples, including antipodal normal and reversed polarities, which they interpreted as
the primary magnetization. The directions from these 13 samples suggest deposition
of the cherts at equatorial latitudes (26 3°).
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From the lower (Upper Triassic) part of the chert section sampled by Hagstrum
and Sedlock (1990), we collected another 89 hand samples (CC1, figs. 2 and 3).
Furthermore, we collected 16 hand samples from ;1.5 m of stratigraphy within a
block of green chert exposed on southern central Cedros Island (CC2, figs. 2 and 3).
Unlike CC1, this second block of chert is not in contact with its underlying magmatic
basement. At the time of accretion (;105 Ma (Sedlock, 1988)) of these two chert
sequences, Cedros Island was located at 32°N.

The Santa Elena Peninsula of northwestern Costa Rica exposes a peridotite
nappe intruded by ;121 Ma diabase dikes overthrusting the Santa Rosa accretionary
complex (SRAC, fig. 4). The SRAC contains sheared peridotites and megabreccias, an
isolated block of layered gabbros, and volcano-sedimentary successions interpreted as
the remnants of a seamount (Tournon, 1994; Baumgartner and Denyer, 2006; Gazel
and others, 2006; Denyer and Gazel, 2009; Bandini and others, 2011; Buchs and
others, 2013; Escuder-Viruete and Baumgartner, 2014; Madrigal and others, 2015).
The seamount complex (sampling location SR, figs. 2 and 4) contains fault-bounded
sequences of ;190 to 180 Ma red bedded cherts, ;175 Ma alkaline basalt sills and
massive basalts, and ;110 Ma cherts, tuffaceous mudstones, turbiditic sedimentary
rocks, and polymict breccias (Tournon, 1994; Baumgartner and Denyer, 2006;
Bandini and others, 2011; Buchs and others, 2013). The layered gabbros, exposed at
Bahia Nancite (sampling location BN, figs. 2 and 4) have been dated at 124 6 4.1 Ma
(40Ar-39Ar age, Hauff and others, 2000). The tectonic and magmatic origin of the
Bahia Nancite gabbros and the Santa Elena ophiolite remain uncertain [see Madrigal
and others (2015) for a discussion], but the position of the peridotite nappe in the
hanging wall overthrusting the SRAC, which contains open-ocean derived material,
indicates that the peridotite nappe must have been located at the westernmost bound-
ary of the North American Plate, adjacent to a trench.

Accretion of the SRAC is dated by the youngest rocks (;110 Ma) of the seamount
complex, in which the chert beds grade into muddy-sandy turbidites whereby amounts

Fig. 3. Simplified geological map of Cedros Island, Mexico, including sampling locations of Hagstrum
and Sedlock (1992) and this study. Based on Kimbrough and Moore (2003).
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of tuffaceous material increase and are overlain by polymict breccia beds
(Baumgartner and Denyer, 2006; Bandini and others, 2011; Buchs and others, 2013).
This sequence is interpreted as (the transition to) trench-fill deposits, and radiolar-
ians from the pelagic to hemipelagic facies dating the onset of distal detrital sedimen-
tation have yielded a late early Albian to early middle Albian age (;110 Ma) (Bandini
and others, 2011). From the top of this sequence, De Wever (1985) obtained a (less
precise) Barremian-Cenomanian age. Buchs and others (2013) used the Albian (110
Ma) age of the chert at the base of the trench-fill sequence to interpret the seamount
to have accreted at 110 Ma, but we argue that a considerable amount of time (and
plate motion) must have passed between the deposition of the cherts and accumula-
tion of the breccia beds, and interpret the age of accretion to be ;100 Ma, consistent
with the younger end of the age spectrum for the top of the chert-to-breccia sequence.
Accretion of SR and BN at 100 Ma postdated opening and subsequent closure of the
Arperos backarc basin, which separated the continental margin from the main North
American continent in latest Jurassic-mid Cretaceous times (Cabral-Cano and others,
2000; Centeno-García and others, 2011; Martini and others, 2011; Centeno- García,
2017; Boschman and others, 2018a). The Santa Elena Peninsula was located at the
southwesternmost part of the North American Plate below which the Farallon Plate
subducted. At 100 Ma, the Santa Elena Peninsula was located at 11°N.

From the SRAC, we collected 46 oriented hand samples from the ;190 to 180
Ma cherts (sites SR1,3,4,10,11), 30 hand samples from ;175 Ma basalt sills (sites SR5-
9), and 20 hand samples from the ;110 Ma cherts (site SR2, fig. 4). Additionally, we
collected 36 cores from the layered gabbros exposed at Bahia Nancite (site BN, fig.
4). Estimates of magmatic foliation in these gabbros were collected as a best (but
uncertain) measure for the paleohorizontal.

Southern Panthalassa: Accreted Remnants of the Phoenix Plate

Setting.—Relicts of the Phoenix Plate are expected along the continental margins
of the southern Panthalassa Ocean: in Antarctica, New Zealand, Australia, and
Southeast Asia. Although accreted relics of Panthalassa plates are present in Southeast
Asia (for example, Jasin and Tongkul, 2013), intense deformation of the accretionary

Fig. 4. Simplified geological map of the Santa Elena Peninsula, Costa Rica, including sampling loca-
tions. SR: sites SR1, 3, 4, 5-8, 10, 11. Based on Bandini and others (2011).
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orogens in the region of intersection of the Tethyan and Panthalassa plate systems
makes interpretation of these records challenging, and we focus on remnants of the
Phoenix Plate accreted at former Gondwana margins. Such accreted relics are well
known from the North Island of New Zealand, where OPS is exposed in the Waipapa
Terrane, a northwest-southeast trending accretionary complex belt (fig. 5). The
Waipapa Terrane comprises pillow basalts, Permian-Lower Jurassic chert, limestone
and argillite, and uppermost Jurassic - lowermost Cretaceous trench-fill deposits
(Spörli and Grant-Mackie, 1976, Spörli and others, 1989; Kear and Mortimer, 2003;
Adams and others, 2007, 2009, 2012; Mortimer and others, 2014). The maximum dep-
ositional age of the trench-fill sandstones is constrained through detrital zircon U-Pb
ages of 141 6 2 Ma (near Auckland) to 152 6 1 Ma (in Northland) (Cawood and
others, 1999; Adams and others, 2012). The Waipapa Terrane is part of New
Zealand's Eastern Province that consists of volcanic arc, ocean floor preserved as
ophiolite, an accretionary complex, and overlying deposits of the Murihiku forearc ba-
sin, which is collectively interpreted as an arc-trench system (Mortimer, 2004, fig. 5).
This arc-trench system was separated from Gondwana-derived continental units
exposed in western New Zealand by the Median Batholith, which represents a long-
lived (;375–110 Ma) Gondwana margin arc (Mortimer, 2004). The tectonic origin of
the Eastern Province has been subject to debate. Triassic plant fossils from the
Murihiku forearc terrane and those recovered from rocks of the Gondwana continen-
tal margin are similar (Retallack, 1987), indicating that the Eastern Province was likely
never separated from the Gondwana margin by a major ocean basin. Zircon prove-
nance studies of Triassic rocks of the Murihiku terrane concluded a wide range of pos-
sible origins, from the northeastern margin of Australia, the New Zealand segment of
the Median Batholith (that is, in its present position), or the Antarctic Peninsula
(Adams and others, 2007; Campbell and others, 2020, and references therein). Sparse

Fig. 5. Simplified geological map of the North Island of New Zealand, including sampling locations of
Kodama and others (2007) and this study. AC: accretionary complex. Based on Mortimer (2014) and
Price and others (2015).
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paleomagnetic data from Murihiku forearc lavas and sedimentary rocks that escaped
widespread Late Cretaceous remagnetization (Oliver, 1994; Haston and Luyendyk,
1991; Kodama and others, 2007; van de Lagemaat and others, 2018b) suggest Early
Jurassic paleolatitudes of 66°S and 62.1 6 12°S, respectively (Grindley and others,
1980; van de Lagemaat and others, 2018b). During the Early Jurassic, New Zealand's
Gondwana margin was located at ;80°S. If the eastern Province indeed originated
close to the Gondwana margin, a ;65°S paleolatitude would suggest that the
Murihiku Terrane was derived from either the northeast Australian margin, or the
Antarctic Peninsula (see Figure 11 in van de Lagemaat and others (2018b)).
Regardless of the location of origin of the Eastern Province terranes, ages of conglom-
erate containing clasts derived from both Eastern and Western Province sources indi-
cate that the two have been juxtaposed since the latest Jurassic (147 Ma) (Tulloch and
others, 1999), implying that during the ;145 Ma accretion of OPS in the Waipapa
Terrane, the Eastern Province was located in its modern position relative to
Zealandia. During accretion, the Eastern Province (then Gondwana) margin, below
which the Phoenix Plate subducted, was located at 80°S.

Previous paleomagnetic results, and sampling: New Zealand.— Kodama and others
(2007) reported results from an extensive paleomagnetic sampling campaign on pre-
Neogene rocks of New Zealand and demonstrated that the high unblocking tempera-
ture component of samples from a single Lower Triassic chert layer from the Waipapa
OPS exposed on Waiheke Island (figs. 2 and 5) passes a reversal test and may thus be
interpreted as primary. The directions from this chert layer indicate deposition at a
paleolatitude of 33.6°S, that is, thousands of kilometers north of the Eastern Province
margin.

From various locations within the Waipapa Terrane along the north coast of the
North Island, we collected a total of 101 hand samples from 11 blocks of chert (sites
TK, WB, TP, TU, BI1-5, KB1,2, figs. 2 and 5). Hand samples were typically collected
from;2 m of stratigraphy. Only the cherts from site WB1 were previously dated, yield-
ing a radiolarian biostratigraphic age of Late Triassic - Early Jurassic (Spörli and
others, 1989). The chert blocks from the Bay of Islands (BI1-5) are from a large
(;200 m) coastal exposure including pillow basalts. We assume that the Waipapa
Terrane encompasses a single disrupted sequence of OPS, and these cherts are there-
fore interpreted to represent the oldest (Permian) segment of the stratigraphy of the
Waipapa Terrane.

Western Panthalassa: Accreted Remnants of the Izanagi Plate

Setting.— For remnants of the Izanagi Plate, we focus on the extensive accretion-
ary record of Japan. The Japanese islands contain a ;500 Ma record of accretionary
orogenesis related to long-lived subduction of Panthalassa lithosphere (Maruyama
and Seno, 1986; Isozaki, 1996), first along the continental margin of the China blocks
(part of Eurasia since the mid-Mesozoic), and since Oligo-Miocene opening of the
Sea of Japan, at the Japanese island arc (Isozaki, 1996, 2000; Maruyama and others,
1997; Isozaki and others, 2010). This long-lived subduction resulted in the formation
of two series of trenchward-younging accretionary complexes separated by the
Median Tectonic Line (MTL) (Isozaki and others, 1990; Isozaki, 2000), fig. 6). The
MTL is a major E-W striking, northward dipping fault, which is currently accommodat-
ing right-lateral strike-slip motion of about 5 to 10 mm/yr, interpreted as strain parti-
tioning in the overriding plate resulting from oblique subduction at the Nankai
Trough (Okada, 1973; Sugiyama, 1994). The MTL juxtaposes an outer (southern)
accretionary orogen against an inner (northern) accretionary orogen. Similarities in
(boreal) fauna between the inner zone and South Primorye (Far East Russia) indicate
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that at least by Permian time, the inner zone was emplaced in its pre-Sea of Japan
opening position adjacent to the Asian continent (Hayami, 1961; Sato, 1962;
Kobayashi and Tamura, 1984; Tazawa, 2001). The outer zone, however, contains
diverse Triassic - Jurassic faunal assemblages with a Tethyan affinity (Matsumoto,
1978; Hayami, 1984; Kobayashi and Tamura, 1984; Hallam, 1986). Sediment prove-
nance studies have shown that Lower Cretaceous sedimentary rocks of the outer zone
are related to the South China Block (Ikeda and others, 2016), and during the Late
Cretaceous, a sinistral pull-apart basin formed along the MTL (the Izumi Group)
(Ichikawa and others, 1979, 1981; Miyata, 1990; Noda and Toshimitsu, 2009; Noda
and Sato, 2018). Following these observations, several authors have proposed a tec-
tonic model in which the MTL accommodated large (.1000 km) left-lateral margin-
parallel strike-slip motion, bringing the outer zone from a low-latitude position to its
modern position juxtaposed against the inner zone during the Cretaceous (Taira and
others, 1983; Yamakita and Otoh, 2000; Yao, 2000; Sakashima and others, 2003).
However, a klippe of inner zone units has been identified overlying the outer zone,
and geophysical data that show that the accretionary complexes of the outer zone are
buried below the inner zone orogen far beyond the surface transect of the MTL,
which has led others to argue that the inner and outer zones were juxtaposed by
thrusting (Isozaki, 1988; Isozaki and Itaya, 1991; Sato and others, 2005, 2015; Ito and
others, 2009). Boschman (ms, 2019) and Boschman and others (2021) illustrated
through a reconstruction of intra-oceanic subduction at the Oku-Niikappu arc (see
below) that in mid-Cretaceous time, the outer zone was likely separated from the
Northeast Asian continental margin by a back-arc basin, and we follow its tectonic
reconstruction in which the outer zone orogen rifted off the South China Block in
the Jurassic, experienced ongoing accretion in Jurassic-Cretaceous time in an intra-
oceanic position and accreted to the inner zone orogen in the Late Cretaceous. For
the pre-Middle Jurassic position of the outer zone, this follows tectonic reconstruc-
tions of Ikeda and others (2016), Sakashima and others (2003), Tazawa (2002), and
Uno and others (2011).

Fig. 6. Simplified geological map of Japan, including sampling locations from Kirschvink and others
(2015), Shibuya and Sasajima (1986), Oda and Suzuki (2000), Ando and others (2001) and this study.
MTL: Median Tectonic Line, AC: accretionary complex. Based on Isozaki and others (2010) and Ueda
(2016).

922 L. M. Boschman and others—Reconstructing lost plates of the Panthalassa Ocean



Hokkaido, the northern island of Japan, is interpreted to correlate to the outer
zone (Ishiga and Ishiyama, 1987; Ueda, 2016). The pre-Neogene basement of
Hokkaido is divided into five ;N-S trending tectonostratigraphic belts, containing
accretionary complexes, overlain and intruded by magmatic arc and fore-arc assemb-
lages (Kiminami, 1992; Ueda, 2016, fig. 6). Within the central Sorachi-Yezo Belt,
Ueda and Miyashita (2005) identified a narrow (<2 km) serpentinite-bearing belt
containing an aggregate of fault-bounded slices and blocks, which they named the
Oku-Niikappu Complex. The Oku-Niikappu Complex consists of (1) massive and foli-
ated serpentinite; (2) a sheeted dike complex containing andesitic, boninitic and
MORB-like dykes; (3) (meta)volcanic rocks, volcaniclastic sedimentary rocks, con-
glomerates (containing clasts of volcanic rocks and serpentinite) and Lower
Cretaceous (Berriasian and younger) red bedded chert; and (4) Albian-Cenomanian
black mudstone and siliciclastic sandstone, partly containing meter-sized blocks of
chert and (meta)volcanic rocks (Ueda, 2003; Ueda and Miyashita, 2003, 2005).
Except for the MORB-like dikes, all igneous rocks from the Oku-Niikappu Complex
show island arc geochemical characteristics (Ueda and Miyashita, 2005). Ueda and
Miyashita (2005) interpreted the Oku-Niikappu complex as a latest Jurassic intra-oce-
anic island arc that went extinct while still in an intra-oceanic setting, was (hyper)
extended and partly eroded, covered by cherts in a pelagic environment, and eventu-
ally, ;45 Ma after arc extinction, by Albian-Cenomanian trench-fill deposits. This
remnant intra-oceanic arc indicates that at least during the Late Jurassic, the north-
western Panthalassa hosted not one (Izanagi), but at least two plates, whereby one oce-
anic plate subducted below the other (Ueda and Miyashita, 2005). We here follow the
reconstruction of Boschman (ms, 2019) and Boschman and others (2021), who ana-
lyzed the stratigraphy and age relationships of all accretionary complexes exposing
OPS sequences on Hokkaido, and reconstructed Jurassic intra-oceanic subduction of
the Izanami Plate (located between the Izanagi and Pacific plates) below the Izanagi
Plate. Boschman (ms, 2019) and Boschman and others (2021) illustrated that the
Oku-Niikappu arc formed near the equator, above seismic tomographically imaged
deeply subducted slab remnants below the central Pacific Ocean (van der Meer and
others, 2012), and how the intra-oceanic Oku-Niikappu subduction zone likely went
extinct as a result of ridge subduction, which is reflected in a change in marine mag-
netic anomaly and fracture zone orientations on the modern Pacific Plate (fig. 1).

Previous paleomagnetic results, and sampling: Japan.—The Inuyama region of the
inner zone of central Japan (figs. 2 and 6), located within the Jurassic Mino-Tamba
accretionary complex belt, contains the type locality of OPS (Isozaki and others, 1990,
Matsuda and Isozaki, 1991; Isozaki, 2014), including a .80 m continuous section of
chert beds spanning the Lower Triassic to Lower Jurassic (Yao and others, 1980;
Matsuda and Isozaki, 1982; Isozaki, 2014). Paleomagnetic studies on the Inuyama
cherts yielded positive fold tests, and indicate low-latitude depositional environments
(between 15³S and 30°N, see table 1, fig. 7) (Shibuya and Sasajima, 1986; Oda and
Suzuki, 2000; Ando and others, 2001). At the time of accretion of the Inuyama cherts
(at;170 Ma), the inner zone subduction system was located at;52°N.

In the Kamura region of the outer zone of southwestern Japan (figs. 2 and 6),
located in the Jurassic accretionary complex of the Chichibu belt, Permian-Triassic
limestone is exposed, interpreted to have formed in the atoll of a mid-oceanic sea-
mount (Sano and Nakashima, 1997; Isozaki and Ota, 2001; Ota and Isozaki, 2006;
Kasuya and others, 2012; Kirschvink and others, 2015). Kirschvink and others (2015)
presented paleomagnetic data from these limestones, yielding a positive reversal test,
and a paleolatitude of 12.2°S for the Permian, whereby the southern hemispheric ori-
gin is concluded based on correlation of the polarity pattern with the
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magnetostratigraphic timescale. At the time of accretion of the Kamura limestones (at
;160 Ma), the outer zone subduction system was located at;34°N.

From the Oku-Niikappu Complex of Hokkaido, we sampled 4 sites: ON1 consists of
pillow basalts (45 cores, one sample per pillow, ON1.34–1.45 are from a single(?) andesitic
lava). At site ON2 (55 cores), we sampled through a ;50 m section of dykes, containing
approximately 27 dikes. ON3 and ON4 (12 and 10 hand samples) were sampled in red
bedded chert stratigraphically overlying the pillow basalts of ON1. At the location of ON3
(which is the base of the chert section), radiolarian biostratigraphy yielded a Berriasian
age (Ueda and Miyashita, 2005). ON4 is located up section relative to ON3 and is there-
fore slightly younger; the basaltic rocks of ON1 are underlying the chert section and are
therefore inferred to be earliest Cretaceous in age or older. We assume that the paleo-hori-
zontal of the basalts of ON1 is the same as the average bedding orientation of ON3 and 4.

methods

Anticipating the extreme durability of radiolarian cherts, we collected hand sam-
ples, from which we drilled typical 25 mm diameter paleomagnetic cores in the paleo-
magnetic laboratory Fort Hoofddijk (Utrecht University, the Netherlands) using a
drill press. Hand samples yielded between one and six cores, which were subsequently
cut into specimens of maximum 22 mm length. We determined core orientations by
measuring planes on the hand samples in the field (generally bedding planes), and
drilling perpendicular to those planes. Based on the red color of the cherts that may
indicate the presence of hematite, most red chert samples were subjected to thermal
demagnetization only; other lithologies (black/gray chert, basalt) were subjected to
both thermal and alternating field demagnetization up to 680° or 100 mT. The sam-
ples were measured on a 2G DC SQUID cryogenic magnetometer. Interpretation of

Fig. 7. Compilation of paleolatitudes derived from paleomagnetic data from the Inuyama cherts. The
black dashed line represents the inferred paleolatitudinal motion of the Inuyama OPS (5°S at 240 Ma, 20°
N at 215 Ma) used in the reconstruction.
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the demagnetization diagrams [plotted in Zijderveld (2013) diagrams] and associated
statistical analyses (following procedure described in Deenen and others (2011) were
performed using the online portal Paleomagnetism.org (Koymans and others, 2016,
2020). We used the principal component analysis of Kirschvink (1980) to interpret
demagnetization diagrams, determined great circle solutions using the method of
McFadden and McElhinny (1988), calculated site mean directions using Fisher (1953)
statistics applied on VGP's, calculated declination and inclination errors DDx and DIx fol-
lowing Butler (1992), and applied 45° cut-offs per sampling location (Johnson and
others, 2008). We assess whether sampling collections have a scatter that may represent
paleosecular variation (PSV) of the geomagnetic field following Deenen and others
(2011). For sampling locations in which the stratigraphic younging direction was not
determined (all New Zealand sites and Cedros site CC2), we corrected the interpreted
directions for both the normal facing (<90° tilting) and overturned (.90° tilting)
option. When possible, we sampled through various bedding orientations within a block,
and when applicable, we used the fold test of Tauxe and Watson (1994). To test for com-
mon true mean directions, we used the bootstrapped coordinate test of Tauxe (2010).

results

Radiolarian Biostratigraphy Cedros Island
From Cedros Island, we analyzed chert samples from the CC2 sampling location.

These yielded abundant but poorly preserved radiolarian fossils consisting dominantly
of genus Capnodoce, Capnuchosphaera, and Canoptum, as well as occurrences of other
genera such as Justium, Sarla? and Xipha (fig. 8). According to Pessagno and others
(1979) and Blome (1984), the genus Capnodoce is the primary marker of the Capnodoce
Zone, which ranges from latest Carnian to middle Norian. Occurrence of the genus
Xipha compare pessagnoi suggests the Xipha striata Subzone in the Capnodoce Zone
(Blome 1984), which was assigned to approximately early Norian (De Wever and
others, 2002). Therefore, the age of CC2 is Late Triassic [full possible range latest
Carnian to middle Norian, probably restricted to the early Norian (;225 Ma)].

Fig. 8. SEM photographs of representative radiolarians from sample CC2. 1: Canoptum anapetes (De
Wever)(De Wever and others, 2002); 2: Capnodoce crystallina (Pessagno) 3: Capnodoce sp., 4&5: Capnodoce
fragilis (Blome), 6: Capnodoce cf. extenta (Blome), 7: Justium sp., 8: Capnuchosphaera cf. theloides (De Wever),
9: Capnuchosphaera sp., 10: Sarla? sp. 11&12: Xipha cf. pessagnoi (Nakaseko and Nishimura), 13: Canoptum
sp. 14: Corum? sp., 15: Pachus sp., and 16: Latium? sp.
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Paleomagnetism

Mexico.— Specimens of the Upper Triassic chert samples of site CC1 (N=131) did
not (or barely) demagnetize in alternating fields up to 100 mT, indicating that hema-
tite is the primary carrier of the magnetization in these cherts. Thermal demagnetiza-
tion yielded a northward-directed low-temperature (20–100°C) component in most
samples, and a stable, consistent medium-temperature (;200–600°C) component
(fig. 9A). This medium-temperature component has a mean direction of D 6 DDx =
20.7 6 1.9°, I 6 DIx = 12.8 6 3.7° (fig. 9B), and yielded a clearly negative fold test
(best clustering between -13 and 4% unfolding, Appendix fig. A1). We interpret this
medium-temperature component as a post-folding overprint. Thermal demagnetiza-
tion did not yield the stable high temperature (600–680°C) component reported by
Hagstrum and Sedlock (1992), except for in a single sample (CC1.82, fig. 9D).
However, we determined great circles encompassing the transition between a medium
(300–600°C) and a high (.600°C) temperature component (figs. 9E and 9F). These
great circles pass through and thus confirm the high-temperature ChRM directions
interpreted by Hagstrum and Sedlock (1992) (figs. 9G and 9H), and we use their
result (tables 1 and 2) to estimate of paleolatitude during deposition of the Upper
Triassic CC1 cherts.

Demagnetization (both thermal and alternating field) of specimens of the Upper
Triassic CC2 cherts yielded again a stable, consistent medium-temperature (;200–
450°C) or 12 to 40 mT component (fig. 9I). Although statistically not distinguishable,
this component is very similar to the medium-temperature component of CC1, with a
mean direction of D 6 DDx = 22.8 6 7.0°, I 6 DIx = 29.0 6 11.1° (fig. 9J). Variations
in bedding orientations within CC2 are too small to allow for a meaningful fold test,
but based on the similarity with the medium-temperature component of CC1, we
interpret the CC2 medium-temperature component as the same, post-folding over-
print. Demagnetization of CC2 also yielded a second stable, higher temperature com-
ponent, in the range of 450 to 550°C or 16-60 mT (figs. 9L and 9M), yielding a mean
direction of D 6 DDx = 189.4 6 7.0°, I 6 DIx =�10.0 6 13.6° after correcting for bed-
ding tilt (fig. 9O). This direction is (both with and without correcting for bedding
tilt) significantly different from the Geocentric Axial Dipole (GAD) field (fig. 9O), sig-
nificantly different from the recorded post-folding overprint, and satisfies the quality
criteria of representing paleosecular variation (A95min = 3.5° < A95 = 7° < A95max =
11.7°, table 1), and we identify it as likely primary. The mean high-temperature direc-
tion corresponds to a paleolatitude of 6 5° [�1.8°, 12.3°], consistent with the result
from CC1. Stratigraphic younging directions are not determined, but when assuming
overturned strata in the CC2 chert block, the degree of clustering and the mean incli-
nation remain unchanged, albeit positive (I6 DIx = 10.06 13.8°).

Costa Rica.—Demagnetization behavior of the ;190 to 180 Ma red chert samples
collected at sites SR1,3,4,10,11 shows that Curie temperatures are generally around 580
to 600°C (Appendix fig. A2), indicating that these cherts contain magnetite as the domi-
nant carrier. Twenty-one out of the total of 105 measured samples also contain a high-
temperature component, likely carried by hematite, which differs from the medium and
low temperature components and is best preserved in SR11 (Appendix fig. A2). We inter-
preted a medium-temperature component (;430–580°C or ;25–60 mT, figs. 10A and
10B), which yields a negative fold test (best clustering between -7 and 20% unfolding,
Appendix fig. A1C), indicating that this component reflects a secondary, post-folding
magnetization. Furthermore, we interpret a high-temperature component (540–680°C,
figs. 10G and 10 H). A fold test on the set of high-temperature directions is indetermi-
nate (Appendix fig. A1D). If primary, the mean direction of SR1,3,4,10,11-ht (N=12,
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Fig. 9. Orthogonal vector (A, D, I, L, M) and equal area (E, F) diagrams of representative samples of
sites CC1 and CC2 from Cedros Island, in geographic coordinates (not corrected for bedding tilt), closed
(open) symbol for declination (inclination), up/west projection. Great circles of CC1 and interpreted
directions from Hagstrum and Sedlock (1992)(G and H) and interpreted directions from CC1 and CC2
(E, F, J, K, N, O).
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Dec 6 DDx = 350.1 6 9.5°, Inc 6 DIx = �15.7 6 17.8°, corrected for bedding tilt) indi-
cates a depositional latitude of 8.0° [�18.3°, 1.1°].

ChRMs from the bedding-parallel basaltic sills sampled at sites SR5-9 were inter-
preted in the 16–45 mT or 360 to 520°C ranges (Appendix fig. A2). Site SR9 was
excluded from further analysis due to high dispersion (K=2.0 before 45° cut-off).
Assuming pre-tilt, bedding parallel intrusion, the paleohorizontal of these sills was
determined from bedding measurements of the surrounding chert layers; variations
in these measurements are too small to yield conclusive results of a fold test. SR6 and
SR7 yielded both normal and reversed directions, but a reversal test is negative. The
directions recovered from the sills are similar to the medium temperature directions
determined from the SR1,3,4,10,11cherts (figs. 10A and 10E) and we therefore inter-
pret these samples to have recorded the same remagnetization.

Demagnetization behavior of the ;110 Ma red chert samples collected at site
SR2 is similar to that of sites SR1,3,4,10,11; ChRMs are interpreted at 20 to 50 mT or
300 to 500°C (Appendix fig. A2). Correcting for bedding tilt yields an enigmatic result.
The bulk of the directions cluster significantly better after tilt correction, but the number
of outliers is increased (figs. 10C and 10D). We interpret this pattern to be the result of
partial remagnetization and the tight cluster (fig. 10D) to represent a pre-folding, and
thus likely, pre-accretion, magnetization. The mean (D 6 DDx = 45.7 6 4.3°, I 6 DIx =
24.96 7.3°) indicates deposition at a latitude of 13.0° [9.0°, 17.5°].

Demagnetization of the BN gabbros yielded very stable, single component direc-
tions (fig. A2). ChRM's are typically interpreted between 390 to 560°C or 35 to 70 mT
(fig. A2). The mean (tilt corrected) ChRM direction is D 6 DDx = 213.8 6 3.6°, I 6

Fig. 10. Interpreted directions from localities SR and BN (Costa Rica).
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DIx = 36.6 6 5.0° (fig. 10J), which corresponds to a latitude of formation of 20.4°
[17.1°, 23.9°], assuming that the magmatic foliation represents the paleohorizontal.

New Zealand.—Demagnetization behavior of specimens from the ten blocks of
chert from the Waipapa Terrane varies strongly. From BI1, BI2, BI3 and BI5, some
specimens yielded erratic results (mostly when demagnetized with alternating fields),
but in others, a single component could be interpreted (Appendix figs. A3A–A3D and
A3F). Thermal demagnetization of BI4 and TP yielded consistent single component
behavior except for a northward-directed overprint in the lowest (20–100°C) tempera-
ture steps (figs. A3E and A3J), and BI4 samples did not (or only barely) demagnetize
in alternating fields up to 100 mT. Samples from KB1 and TK also did not or only
partly demagnetize in alternating fields (figs. A3G and A3I), and thermal demagnet-
ization yielded two-component behavior. We interpreted the higher temperature
component, together with the partial alternating field component as the ChRM. KB2,
TU and WB showed very consistent, single component behavior (figs. A3H, A3K and
A3L). From the total of ten blocks of chert, six blocks (TK, TU, TP, WB, KB1,2, BI4)
yielded mean directions (not corrected for bedding tilt) similar to the Late
Cretaceous remagnetization direction documented by van de Lagemaat and others
(2018b) (fig. 11A). Overall, demagnetization behavior from these six blocks was con-
sistent, and mostly only a single component could be interpreted. Four blocks (BI1,
BI2, BI3 and BI5) yielded different results (fig. 11B), indicating the possibility of a pri-
mary magnetization. In BI3 only, variations in bedding were sufficient to allow for a
statistically meaningful fold test, which is negative (best clustering between -17 and
17% unfolding, fig. A1H). The magnetizations of BI1, BI2 and BI5 cannot be con-
firmed as primary based on field tests, but the mean directions are statistically different
from the GAD field (fig. 11B) and from the two recorded post-folding overprints, and sat-
isfy the quality criteria of representing paleosecular variation (A95min < A95 < A95max,
table 1). The mean ChRM directions (corrected for bedding tilt) from BI1, BI2 and BI5
are D 6 DDx = 19.2 6 13.1°, I 6 DIx = 23.9 6 22.4°, D 6 DDx = 165.3 6 13.0°, I 6 DIx =
�27.3 6 21.1°, and D 6 DDx = 320.4 6 9.7°, I 6 DIx = 14.0 6 18.4° (fig. 11F, H, L), cor-
responding to paleolatitudes of 12.5° [0.8°, 27.6°], 14.5° [3.1°, 29.4°], and 7.1° [�2.2°,
17.6°], respectively. When corrected for bedding assuming overturned strata, ChRM
directions cluster significantly less for all three sites.

Japan.—Demagnetization behavior of specimens from ON1 is highly variable;
most samples contain single components trending towards the origin (for example
ON1.7, Appendix fig. A4B), but some contain overlapping components (for example
ON1.3, fig. A4A) that do not reach the origin. Dispersion of the interpreted directions
is high (K=5.4) and especially inclinations vary substantially (between -70 and 170°,
fig. 12A), hampering calculation of a meaningful mean direction of this site.
Demagnetizations from ON2 are straightforward directions trending towards the ori-
gin (figs. A4C and A4D), but dispersion of the interpreted directions is essentially ran-
dom (K = 1.9) and at least a third of the directions (interpreted in relatively low
demagnetization steps, for example ON2.14) scatter around the GAD field (fig. 12B).
ON3 and ON4 are demagnetized thermally only. ON3 yielded consistent, single com-
ponents, in the range of;450 to 640°C (figs. A4E and A4F). A fold test on these direc-
tions is negative (best clustering between �42 and 3% unfolding, figs. 12E, 12F, A1J).
From ON4, two components are interpreted: a medium-temperature component
(420-560°C) and a high-temperature-component (620–680°C, figs. A4G–A4J). The
medium-temperature component from ON4 is very similar to that of ON3 (figs. 12C–
12F), and although they do not share a common mean, we interpreted both these
directions as a shared post-tilting magnetization. The high-temperature component
(figs. 12G and 12H) may represent a primary magnetic signal, although no field tests
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can be performed to confirm this, as no reversals were recorded and within-site varia-
tions in bedding orientation were not large enough to allow for a statistically meaning-
ful fold test. Nonetheless, the ON4-ht component yields directions (not corrected for
bedding tilt) significantly different from the GAD field (fig. 12B) and from the
recorded post-folding magnetization. Furthermore, the magnetization is carried by
hematite with very high (620–680°C) unblocking temperatures, and satisfies the qual-
ity criteria of representing paleosecular variation (A95min = 3.4° < A95 = 8° <
A95max = 11.1°, table 1). For these reasons, we argue that a primary nature of this
magnetization is likely. The mean direction (after tilt-correction) from ON4-ht is:
Dec 6 DDx = 251.4 6 8.0°, Inc 6 DIx = 7.2 6 15.7° (fig. 12H), corresponding to a
paleolatitude of 3.6° [-4.3°, 11.9°].

interpretation of paleomagnetic results

Potential Inclination Error
Radiolarian chert is in principle suitable for obtaining depositional latitudes

through paleomagnetic analysis because it preserves well-developed bedding planes
necessary to restore the paleomagnetic vector to its original direction, can be dated
with biostratigraphy, and generally contains sufficient magnetic carrier minerals. A
possible problem of using chert, however, is that little is known about its compaction
behavior. Compaction of sediments after deposition has been shown to significantly
alter the inclination of primary magnetizations, which may lead to significant underes-
timation of paleolatitude (Collombat and others, 1993; Torsvik and Van der Voo,
2002; Kent and Tauxe, 2005; Krijgsman and Tauxe, 2006). Two general methods have

Fig. 11. Interpreted directions from sites in New Zealand, including results from Kodama and others (2007).
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been developed to account for inclination shallowing, either using magnetic fabrics
(Jackson and others, 1991; Kodama, 2009), or using the relationship between elonga-
tion of typical paleomagnetic direction scatters induced by paleosecular variation of
the geomagnetic field, and inclination (Tauxe and Kent, 2004). Alternatively, a typical
compaction factor may be inferred (for example 0.6 used by Torsvik and others,
2012), although compaction varies strongly between and even within sediment types
(Vaes and others, 2021). It is unclear, however, what compaction factor may be appro-
priate for radiolarian chert, and our datasets are not large enough to attempt estimat-
ing compaction with the E/I method of Tauxe and Kent (2004).

Previous estimates on inclination shallowing in chert vary. Huang and others
(2015) collected large paleomagnetic sample sets from two sections of Lower
Cretaceous (;130–120 Ma) radiolarian chert and a section of time-equivalent sand-
stone, both deposited on the Indus-Yarlung ophiolites of southern Tibet. They dem-
onstrated through detrital zircon analysis that these sandstones were derived from the
Tibetan Plateau, which during the Early Cretaceous was located at a latitude of;15°N
(Ma and others, 2014; Yang and others, 2015; van Hinsbergen and others, 2019).
Inclinations of the sandstones and cherts were similar, and correcting for inclination
shallowing in the sandstone samples by both the E/I and the magnetic fabric method
yielded a corrected paleolatitude estimate of ;16°N, consistent with the latitude of
the Tibetan Plateau (Huang and others, 2015). Correcting the inclinations of the
chert data to match the sandstone paleolatitude would require a compaction factor
for the cherts of;0.7 to 0.8. Iijima and others (1989) estimated much higher compac-
tion in Triassic chert from central Honshu (Japan): 60 to 80% (which corresponds to
a compaction factor of 0.2–0.4), based on the bending of sedimentary laminae around
a fragment of silicified wood. Oda and Suzuki (2000) on the other hand, applied the
relationship between ARM anisotropy and inclination shallowing of Jackson and
others (1991) to IRM anisotropy and concluded that this correction method changed
their obtained inclinations by a maximum of 2° only (corresponding to flattening fac-
tors of 0.9–1.0, fig. 3). Radiolaria are commonly preserved unflattened, suggesting
that compaction in chert is generally rather minor (Ando and others, 2001), or, that
compaction strain is fully accommodated in the matrix hosting the radiolaria.

Due to the lack of control on the amount of compaction in chert and the absence
of data to apply a correction method, we use uncorrected values of inclination, which
correspond to minimum estimates of depositional paleolatitude. As a result of the

Fig. 12. Interpreted directions from sites in Hokkaido (Japan).
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non-linear relationship between inclination and latitude, the effect of compaction on
inclination is largest around ;50°N/S and considerably smaller around the poles and
the equator (Tauxe and Kent, 2004). The highest latitudes from cherts used in this
study were obtained from New Zealand (33°, for Triassic cherts sampled by Kodama
and others (2007), and using the compaction factor of 0.7 as estimated by Huang and
others (2015), not taking inclination shallowing into account would underestimate
the paleolatitude by 10° (table 2). All other paleolatitudes, being closer to the equa-
tor, would be underestimated by smaller amounts.

Hemispheric Origin
Because major rotation of rock units in accretionary complexes is probable, it is diffi-

cult to determine the magnetic polarity and hemispheric origin. Based on a correlation
with the global magnetostratigraphic timescale, Kirschvink and others (2015) and Ando
and others (2001) argued for a southern hemispheric origin of the Permian Kamura lime-
stone and Anisian chert of the Inuyama region of Japan. For all other obtained paleolati-
tudes fromOPSmaterials, however, hemispheric origin is unknown. In our reconstruction,
we generally assume minimum plate motions, implying that we assume a northern hemi-
sphere origin for the post-Anisian rocks accreted in Japan (fig. 7) and a southern hemi-
sphere origin for the rocks accreted in New Zealand. For a discussion of hemispheric
origin of the rocks accreted in Costa Rica and Mexico, see below.

Summary of Paleomagnetic Constraints on Farallon, Phoenix, and Izanagi Plate Motion
Our compilation of previously published and newly collected paleomagnetic data

from OPS derived from the Farallon, Phoenix, and Izanagi plates provides direct control on
latitudinal motion components of these plates between the time of formation of the OPS
and subsequent accretion in the circum-Panthalassa trenches. The paleolatitudinal path of
the Farallon Plate is constrained by the Late Triassic paleolatitude of CC1/CC2 combined
(2.6°N/S [�7.9°, 5.2°]) from Cedros Island, which accreted at 105 Ma at 32° N.
Furthermore, the 190 to 180 Ma SR cherts (paleolatitude of 8.0°N/S [�18.3°, 1.1°]), the
124 Ma BN gabbros (paleolatitude of 20.4°N/S [17.1°, 23.9°]), and the 110 Ma SR2 cherts
(paleolatitude of 13.0°N/S [�9.0°, 17.5°]) from the Santa Elena Peninsula of Costa Rica
accreted at 100 Ma at 11° N. Phoenix plate motion is constrained by the paleolatitudes of
the upper Permian BI cherts (11.4³S [�0.6°, �24.9³]) and the Lower Triassic Waiheke
Island cherts (33.6°S [�51.2°,�20°]), which accreted at the Eastern Province trench of New
Zealand at 150 Ma at;80°S. Lastly, Izanagi plate motion is constrained by the paleolatitude
of the upper Permian Kamura limestone (12.2°S [�14°, �10.4°]), data from the Inuyama
cherts, here summarized as having a 240 Ma paleolatitude of 5°S and a 215 Ma paleolatitude
of 20°N (fig. 7, table 2), and the paleolatitude of the Berriasian ON cherts (3.6°N/S [�4.3°,
11.9°]). The Inuyama cherts accreted at the inner zone subduction system of Japan at 170
Ma at 52°N, and the Kamura limestones and ON cherts accreted at 160 Ma and 100 Ma at
the outer zone subduction system of Japan at 34°N and 54°N respectively. The SR cherts,
the Kamura limestones, and the ON cherts were all formed in an intra-plate setting (the SR
cherts and the Kamura limestones at a seamount, the Berriasian ON cherts at a then extinct
island arc), indicating deposition at an unknown distance away from the spreading ridge at
which the underlying basement formed. From all the other compiled and new datasets of
OPS sequences, the origin of the underlying magmatic basement in unknown.

reconstruction: relative plate motion, mantle reference frames, and

paleomagnetic data

0 to 150 Ma
For 0 to 83 Ma, we use the reconstruction of the Pacific Plate and its conjugates,

linked to the Indo-Atlantic plate system through marine spreading records of the
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Antarctic-Pacific ridge, from Wright and others (2016). Prior to 83 Ma, when no ridge
was present connecting the Panthalassa and Indo-Atlantic plate systems, relative plate
motions of the two systems cannot be constrained from marine geophysical data and
we determine relative motions between these systems by placing both in independent
mantle reference frames, following Boschman and others (2019, fig. 13). We use the
Pacific hotspot frame of Torsvik and others (2019) for the Panthalassa plate system,
and the slab-fitted frame of van der Meer and others (2010) for the Indo-Atlantic plate
system. We subsequently place the global plate circuit in the paleomagnetic reference
frame of Torsvik and others (2012). We test the resulting 83 to 150 Ma reconstruction
with post-150 Ma paleomagnetic data of the Pacific Plate (Riisager and others, 2003;
Fu and Kent, 2018), from OPS from Costa Rica (SR2 and BN) and from Japan (ON4).
To do so, we take the following steps: we first reconstruct Farallon, Phoenix, and
Izanagi plate motion by mirroring marine magnetic anomalies preserved on the
Pacific Plate, assuming symmetric spreading parallel to transform faults. Second, we
add marking points representing the SR2, BN and ON4 rocks that are located at the
Santa Elena and Hokkaido trenches at the age of their accretion (100 Ma), and attach
these to the Farallon and Izanagi plates before these times (following the cross-over
reconstruction approach of (van Hinsbergen and Schmid, 2012). The 83 to 150 Ma
reconstruction (140 Ma shown in fig. 14A) is fully consistent with the paleolatitudinal
estimates from SR2 (110 Ma), ON4 (145 Ma) and the youngest two estimates from
ODP Site 801B (135 and 142 Ma), and within 5° from the 149.4 Ma estimate from
ODP site 801B, and BN (124 Ma)(table 2). The connection of the two plate circuits
through mantle reference frames thus successfully predicts paleolatitudes of the
Panthalassa plates, and establishes an accurate global plate circuit back to 150 Ma.
Furthermore, the Farallon, Phoenix and Izanagi plates are now reconstructed from

Fig. 13. Flowchart illustrating the adopted reconstruction approach to reconstruct the plates of the
Panthalassa Ocean and link the tectonic history of those plates to the global plate circuit.
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their spreading ridge (relative to the Pacific Plate) to the subduction zones in which
they subducted during the Cretaceous (relative to the circum-Panthalassa trenches).

150 to 190 Ma
The geological records of Mexico, New Zealand, and Japan contain evidence of

subduction since at least 220 Ma, 375 Ma, and 500 Ma, respectively (Maruyama and
Seno, 1986; Isozaki, 1996; Mortimer, 2004; Boschman and others, 2018b). These geo-
logical records (arc volcanic rocks, accretionary complexes, forearc sequences, et
cetera) are far from continuous, and temporal interruptions in subduction or episodes
of trench migration can thus not be excluded. Nonetheless, overall, they testify to
hundreds of millions of years of overall plate convergence between the Panthalassa
and Indo-Atlantic plate systems. Furthermore, the continuous Cocos slab, connected

Fig. 14. Reconstruction of the Izanagi (IZG), Izanami (IZM), Farallon (FAR) and Phoenix (PHO)
plates of the Panthalassa Ocean (Reconstruction poles in Supplementary data 3, http://earth.geology.
yale.edu/%7eajs/SupplementaryData/2021/Boschman) at (A) 140 Ma, (B) 180 Ma, (C) 220 Ma, and (D)
260 Ma. Outline of the lithospheric basement of the future Caribbean Plate (red dashed line in Farallon
Plate) for reference. Reconstruction of North/South America and Africa from Torsvik and others (2012);
Europe/Asia from Müller and others (2016) and Domeier and Torsvik (2014).
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to the actively subducting Cocos Plate and reaching into the lowermost mantle below
the Atlantic indicates that subduction below the Mexican margin was uninterrupted
since probably 220 Ma (Boschman and others, 2018b). We therefore determine 150
to 190 Ma plate motions of the Panthalassa plate system based on the inferred conver-
gence between Izanagi and Japan, Farallon and Mexico, and Phoenix and New
Zealand, and on paleomagnetic data from the Pacific Plate and SR (Costa Rica).
Furthermore, for the northwestern Panthalassa domain, we incorporate subduction
in the near-equatorial intra-oceanic Oku-Niikappu trench (figs. 14A and 14B) as
reconstructed in Boschman (ms, 2019) and Boschman and others (2021). The rate of
subduction at this trench, where the Izanami Plate subducts below the Izanagi Plate, is
slightly larger than the half-spreading rate of the Izanami-Pacific ridge, which means
that the Izanami Plate decreases in size, resulting in ridge subduction in Berriasian
time (fig. 14A). The age of initiation of intra-oceanic subduction at the Oku-Niikappu
trench is unknown; in our reconstruction, subduction starts at 185 Ma.

Fig. 14. Continued
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We add a marking point for the 190 Ma SR cherts on the Farallon Plate. We recon-
struct the Panthalassa plate system back to 190 Ma (by moving the Pacific Plate, which is
the base of the Panthalassa plate system) such that (1) preceding (130–150 Ma) conver-
gence directions between Farallon and Mexico/Costa Rica and Izanagi and Japan are
maintained as much as possible, and (2) there is no significant vertical axis rotation of
the Pacific Plate, as concluded by Fu and Kent (2018). Next, we adjust the reconstruction
to place the marking points of the ODP site 801B and SR within the uncertainty limit of
the obtained paleolatitudes. For SR, there are two hemispheric options. Placing SR at the
northern hemisphere would place the ODP site 801B (from which southern hemispheric
latitudes are obtained) at the northern hemisphere as well, and furthermore, would pre-
dict southeastward motion of the Farallon Plate relative to North America (sub-parallel
to the continental margin). To comply with convergence and a southern hemispheric or-
igin for the OPD site 801B sedimentary rocks, we thus place SR at the southern hemi-
sphere (fig. 14B), yielding a reconstruction without major relative plate motion changes.
The resulting 190 to 150 Ma reconstruction upholds the relative plate motions of the
Panthalassa plate system from marine magnetic anomaly data and fits all paleomagnetic
data within a few (<4) degrees (table 2).

This new reconstruction (fig. 14B) does not agree with the 190 Ma possible posi-
tions of the (birthplace of the) Pacific Plate suggested by Boschman and van
Hinsbergen (2016). Boschman and van Hinsbergen (2016) illustrated that the birth
of the Pacific Plate may be explained by cessation of an intra-oceanic subduction sys-
tem between the Farallon and Izanagi plates, and suggested that the location of the
early Pacific Plate may be inferred from fitting the ;190 Ma Izanagi-Farallon-Phoenix
triple junction on a lower mantle slab remnant of this subduction. Fitting the 190 Ma
Izanagi-Farallon-Phoenix triple junction on the Trans-Americas slab (which is the pre-
ferred scenario in Boschman and van Hinsbergen (2016)) yields divergence between
Farallon and North America between 190 to 150 Ma and is thus not likely. Similarly,
fitting the triple junction on a Telkhinia slab (van der Meer and others, 2012) yields
phases of divergence between the Izanagi Plate and Japan. Assuming continuous sub-
duction around the Pacific, the 190 Ma absolute location of the Izanagi-Farallon-
Phoenix triple junction was most likely located somewhere between the Trans-
Americas and the Telkhinia slab. This region is associated with very low resolution in
mantle tomography (fig. 4 in Boschman and van Hinsbergen, 2016) and slabs may
exist within this domain, but cannot be used for a slab-fitting approach.

190 to 260 Ma
Reconstructing pre-190 Ma motions of the Izanagi, Farallon and Phoenix plates,

or any older ocean, requires a different approach, as there is no control on relative
plate motions from marine geophysical data. As a consequence, a ‘plate system' is no
longer available, but needs to be inferred from motions of individually reconstructed
plates (fig. 13). Boschman and van Hinsbergen (2016) discussed how the birth of the
Pacific Plate followed upon reorganization at an unstable triple junction that was gen-
erated upon cessation of a subduction zone between the Farallon and Izanagi plates.
Even though no data are available that recorded the events leading up to the 190 Ma
birth of the Pacific, simple rules of plate kinematics (Cox and Hart, 1986) allow us to
hypothesize the situation that preceded the plate reorganization. The orientation of
the pre-190 Ma Farallon-Izanagi subduction segment (fig. 15C) is not straightfor-
wardly explained in a Farallon-Izanagi spreading context, but instead, is equal to the
orientation of Izanagi-Phoenix transforms. We therefore suggest that initiation of the
subduction that culminated in the birth of the Pacific plate may have followed upon cap-
ture of a fragment of Phoenix lithosphere by the Farallon Plate (fig. 15B). Plate capture
may have been preceded by reorganization of the original Izanagi-Farallon-Phoenix
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ridge-ridge-ridge triple junction into a ridge-transform-transform or ridge-ridge-trans-
form triple junction, which has been documented for RRR triple junctions (Kleinrock
and Morgan, 1988, Viso and others, 2005). The duration of subduction depends on the
length of the transform segment along which the triple junction migrated from the
moment of plate capture until formation of the unstable transform-transform-transform
triple junction (fig. 15D) and may have been in the order of only a few to ten million
years. Before that time, we assume that the Izanagi, Farallon and Phoenix plates were
joined in a long-lived stable RRR triple junction (fig. 15A).

To reconstruct pre-190 Ma plate motions, we add additional marking points: the
Permian BI1/BI2/BI5 and Lower Triassic Waiheke Island cherts from New Zealand,
the 215 Ma and 240 Ma Inuyama cherts, the upper Permian Kamura limestone from
Japan, and the CC1/CC2 cherts from Cedros Island, Mexico. Next, we reconstruct
Farallon, Izanagi and Phoenix plate motion, whereby we accommodate (1) the paleo-
magnetic data; (2) minimal relative plate motion changes; (3) continuous conver-
gence between Izanagi and Japan, Farallon and Mexico, and Phoenix and New
Zealand; and (4) continuous divergence between Izanagi, Farallon and Phoenix.
Through these latter two restrictions on plate motions, the hemispheric origin of the
paleomagnetic sites for which this was unknown is determined: both the CC1/CC2 cherts
from Cedros island and the BI and Waiheke Island cherts from New Zealand are derived
from the southern hemisphere (figs. 14C and 14D). Restricted by the age of the oldest
rocks from which paleolatitudes are obtained, the Farallon Plate is reconstructed back to
220 M and the Izanagi and Phoenix plates to 260 Ma (figs. 14C and 14D).

Fig. 15. Schematic representation of ;190 Ma tectonic events that may have led to the birth of the
Pacific Plate. (A) Pre-plate reorganization, long-lived Izanagi–Farallon–Phoenix triple junction. (B)
Capture of a fragment of Phoenix lithosphere by the Farallon Plate, resulting in a triple junction jump.
(C) Migration of the newly formed trench-transform-transform triple junction migration until arrival at
the kink in the Farallon-Izanagi plate boundary. (D) 190 Ma: formation of an instable transform-trans-
form-transform triple junction. E) Birth of the Pacific Plate.
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discussion: future improvements in reconstructing lost oceanic plates

In multiple field campaigns of sampling geological records of ancient subduction
processes in accretionary orogens around the Pacific, we collected a total of 674 hand
samples from OPS. From those, 106 (16%) yielded paleomagnetic directions that we
interpreted as (potentially) primary. Despite being high risk, this project illustrates
that reconstructing lost oceanic plates from paleomagnetic data of OPS rocks is possi-
ble, and that attempting to do so is worthwhile. Even though the pre-190 Ma recon-
struction of the Panthalassa Ocean developed in this study is still associated with
considerable uncertainties from paleomagnetic data, plate geometries, plate rotations
and longitudinal plate motion rates, it does comply with all currently available geolog-
ical, paleomagnetic, and marine geophysical data of the Pacific and Mexico, Costa
Rica, New Zealand and Japan. This study illustrates that even with limited data, it is
possible to integrate geological records from accretionary orogens with paleomag-
netic datasets from OPS, and quantitatively reconstruct the kinematic evolution of
plates that are (almost) entirely lost to subduction.

In the reconstruction presented in this study, the reconstructed sampling sites are
at all times within 5° of the paleomagnetically determined paleolatitudes. Compilations
of paleomagnetic data from the Indo-Atlantic plate system, however, illustrate that indi-
vidual paleomagnetic poles scatter considerably around Apparent Polar Wander Paths
(Torsvik and others, 2008, 2012). Tectonic reconstructions of large plates from paleo-
magnetic data thus improve when larger datasets including multiple poles per time pe-
riod are used. Currently, available paleomagnetic data from OPS from circum-Pacific
accretionary orogens is still limited, and as a result, the reconstruction displayed in figure
15 is preliminary and may change with growing datasets.

In this study, we have deliberately not included reconstructions of the continental
margins in the northern Panthalassa realm (the Russian northeast and Alaskan-
Canadian Cordillera) and of Southeast Asia. These orogens contain remnants of mul-
tiple volcanic arcs that formed at synchronous Mesozoic subduction systems, and
reconstructions either do not exist or are controversial, which means that correlating
OPS exposed in these orogens to oceanic plates is not straightforward. As a result, the
presented here Panthalassa reconstruction is incomplete, and further development
requires progress in the development of kinematic reconstructions of the remaining
segments of Mesozoic circum-Panthalassa trenches, and the incorporation of newly
collected or already published paleomagnetic data from OPS rocks accreted in these
segments [for example, Cretaceous limestones from the Franciscan complex
(Tarduno and others, 1986)]. Nonetheless, our partial reconstruction does already
shed some light on the tectonic history of the northern and western Panthalassa
Ocean. The OPS that are currently exposed in Japan, New Zealand and Central
America were all formed in the central Panthalassa Ocean, at low latitudes. This
implies that, except for the Oku-Niikappu subduction zone, there were no plate boun-
daries between the central Panthalassa Ocean and the continental margins of these
three regions. From this observation, we can conclude that intra-oceanic arcs accreted
to the northern and western continental margins cannot have traveled extensively
throughout the Panthalassa Ocean and were most likely fringing arc systems; their
pre-accretion motion was restricted to the northern and western Panthalassa Ocean,
respectively. Following progress in the reconstruction of the here-excluded regions,
plate rotations (or a lack thereof) of the Izanagi, Farallon and Phoenix plates can be
determined when paleomagnetic data are available from age-equivalent OPS rocks
derived from accretionary complexes far apart (for example for Farallon, from
Mexico and from accretionary complexes of the Canadian Cordillera). Additionally,
geochemical analyses on magmatic basement sections may provide information on
the nature of the oceanic basement of the OPS (MORB, IAT, OIB). In cases of MORB
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basement, ridge segments can be reconstructed, thereby gradually generating a pic-
ture of the geometry of the Panthalassa plates.

Continuing the reconstruction further back into the Paleozoic requires data col-
lection from accretionary orogens that formed during older subduction of the
Panthalassa plates, such as the New England orogen of eastern Australia (Cawood and
others, 2011), the Beishan orogen in China (Xiao and others, 2010b), or the orogen
in central Mongolia that formed at the expense of the Mongol-Okhotsk Ocean
(Tomurtogoo and others, 2005). Similar approaches may be feasible for other lost
Paleozoic oceans such as the Rheic Ocean that closed during construction of much of
Europe (Nance and others, 2010; Domeier, 2016; Franke and others, 2017), the
Iapetus Ocean that closed during the Caledonian orogeny (Torsvik and others, 1996;
Domeier, 2016), the oceans that formed the Central Asian Orogenic Belt (Windley
and others, 2007, Xiao and others, 2010a; Domeier, 2018), or even Neoproterozoic to
Cambrian ocean floor of which OPS remnants are found in the Bohemian Massif
(Ackerman and others, 2019).

conclusions

We presented a quantitative kinematic reconstruction of subducted plates of the
Panthalassa Ocean, based on (1) relative plate motions derived from marine magnetic
anomaly and fracture zone data; (2) absolute plate motions from hotspot tracks; and
(3) paleomagnetic data from OPS accreted in the circum-Pacific accretionary orogens
and the Pacific Plate. We showed that determining relative plate motions between the
Panthalassa and Indo-Atlantic plate system through the use of two independent man-
tle reference frames is in line with paleomagnetic data. Furthermore, in the absence
of absolute plate motion control, we reconstructed plate motions of the Izanagi,
Farallon and Phoenix plates such that divergence between the three major oceanic
plates is maintained, convergence with the continental margins of Japan, Mexico and
New Zealand is maintained, and paleomagnetic constraints are met. The reconstruc-
tion approach developed in this study illustrates that in the absence of marine mag-
netic anomaly data and mantle reference frames, deep-time plate circuits of
supercontinents and superoceans may be reconstructed using OPS sequences, paleo-
magnetism, and constraints on the nature of circum-oceanic plate boundaries.
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Fig. A1. Orthogonal vector diagrams of representative samples of localities SR and BN (Costa Rica) in
geographic coordinates (not corrected for bedding tilt), closed (open) symbol for declination (inclina-
tion), up/west projection.
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Fig. A2. Orthogonal vector diagrams of representative samples from New Zealand in geographic coor-
dinates (not corrected for bedding tilt), closed (open) symbol for declination (inclination), up/west
projection.

through Paleomagnetic data from circum-Pacific accretionary Orogens 941



Fig. A3. Orthogonal vector and equal area diagrams of representative samples from Japan in geo-
graphic coordinates (not corrected for bedding tilt), closed (open) symbol for declination (inclination),
up/west projection.
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Fig. A4. Bootstrapped fold tests on directions from sites from Cedros Island (CC1, CC2), Costa Rica
(SR1,3,4,10,11-mt and SR1,3,4,10,11-ht), New Zealand (BI4, KB1,2, WB, TU, TK, TP, BI1, BI2, BI3, and
BI5), and Japan (ON3). Cumulative distribution function (with confidence interval in light blue) based
on 1000 bootstraps (average of bootstraps in red).
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