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Abstract

Plate tectonics is primarily driven by the constant gravitational pull of slabs where dense oceanic lithosphere sinks into the

mantle at subduction zones. Under stable plate boundary configurations, changes in plate motion are then thought to occur

gradually. Surprisingly, recent high-resolution Indian plate reconstructions revealed rapid (2-3 Ma) plate velocity oscillations

of ±50 %. Here we show, through numerical experiments, that the buckling of slabs in the mantle transition zone causes

such oscillations. This buckling results from the deceleration of slabs as they sink into the lower mantle. The amplitude and

period of buckling-associated oscillations depend on average subduction velocity and transition zone accommodation space.

The oscillations also affect the upper plate which may explain enigmatic observations of episodic deformation and fluid flow

in subduction-related orogens. We infer that the slab pull that drives plate tectonics is generated in just the top few hundred

kilometers of the mantle.
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Abstract 19 

Plate tectonics is primarily driven by the constant gravitational pull of slabs where dense 20 

oceanic lithosphere sinks into the mantle at subduction zones. Under stable plate boundary 21 

configurations, changes in plate motion are then thought to occur gradually. Surprisingly, 22 

recent high-resolution Indian plate reconstructions revealed rapid (2-3 Ma) plate velocity 23 

oscillations of ±50 %. Here we show, through numerical experiments, that the buckling of 24 

slabs in the mantle transition zone causes such oscillations. This buckling results from the 25 

deceleration of slabs as they sink into the lower mantle. The amplitude and period of 26 

buckling-associated oscillations depend on average subduction velocity and transition zone 27 

accommodation space. The oscillations also affect the upper plate which may explain 28 

enigmatic observations of episodic deformation and fluid flow in subduction-related 29 

orogens. We infer that the slab pull that drives plate tectonics is generated in just the top 30 

few hundred kilometers of the mantle.  31 

Plain-Language Summary 32 

Motions of tectonic plates are relatively stable over 10s of millions of years and are mainly driven by 33 

the gravitational pull of the subducting part of the plate. However, new data from the Indian plate 34 

shows that these velocities may vary rapidly in magnitude. Deeper in the Earth’s mantle the 35 

deceleration of subducted plates, as they encounter more resistance, causes them to fold. Our 36 

models show that this folding can cause the rapid variations of plate motion at short (2-3 million 37 

year) timescales and that these variations may also cause episodic deformation of the overriding 38 

plate. We propose new insights in the range (depth) at which the gravitational pull of a subducting 39 

plate may still influence its plate motion. 40 

 41 

1. Introduction 42 

 Plate kinematic reconstructions provide the quantitative constraints that underpin our 43 

understanding of the driving and resisting forces of plate tectonics: primarily slab pull and to a lesser 44 

extent ridge push as driving forces (Forsyth & Uyeda, 1975; Lithgow‐Bertelloni & Richards, 1998), 45 

and mantle drag as either driving or resisting plate motion (particularly by continental keels or 46 

slabs), and the resistance on subduction interfaces, as main additional forces (Behr & Becker, 2018; 47 

Coltice et al., 2019; Spakman et al., 2018). An important constraint on plate reconstruction and 48 

relative plate motions since the Mesozoic is provided by marine magnetic anomalies that reveal 49 
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plate motion change on various temporal scales. Reconstructions of major ocean basins usually 50 

provide one average Euler pole (plate motion data point) for stages of 3-10 Ma (e.g. Müller et al., 51 

2019), even though often more magnetic anomalies can be present in such stages. Such 52 

reconstructions reveal gradually changing plate motions on tens of millions of year time scales with 53 

occasional sudden cusps in plate motion between stages (Doubrovine et al., 2012; Müller et al., 54 

2022; Torsvik et al., 2008). Gradual plate motion changes can be explained by changes in slab pull for 55 

example due to slow age variation of subducting lithosphere (Goes et al., 2011; Sdrolias & Müller, 56 

2006), or in the lubrication of plate contacts (Behr & Becker, 2018). Cusps may correspond to 57 

changes in contributing forces through e.g., changes in slab pull due to subduction initiation or arrest 58 

(Gürer et al., 2022; Hu et al., 2022), by slab detachment (Bercovici et al., 2015) or resistance to 59 

subduction of large oceanic plateaus (Knesel et al., 2008), the arrival of a mantle plume-head that 60 

may lubricate or push plates (van Hinsbergen et al., 2011; van Hinsbergen et al., 2021), or to the 61 

decrease of a plate area through breakup (e.g.,Wortel & Cloetingh, 1981). Only recently, high-62 

resolution (~0.5-1 Ma) plate kinematic reconstructions of India-Africa spreading during the Eocene 63 

(DeMets & Merkouriev, 2021) revealed surprisingly variable ocean spreading kinematics. 64 

It has long been known that the spreading rate between India and Africa, and the 65 

convergence rate between India and Asia, between ~65 and ~50 Ma, was very high, close to 20 cm/a 66 

(Patriat & Achache, 1984; van Hinsbergen et al., 2011). Those estimates were based on about one 67 

Euler pole every ~5 Ma. White & Lister (White & Lister, 2012) suspected that shorter-wavelength 68 

plate velocity oscillations may have occurred although being smoothed out in existing global plate 69 

tectonic reconstructions. Their suspicion was recently corroborated by the high-resolution magnetic 70 

anomaly study of (DeMets & Merkouriev, 2021), which revealed that the period of high India-Asia 71 

convergence rate contained rapid oscillations with an amplitude 10 cm/a or more at a period of 6-8 72 

Ma (Figure 1). Such plate motion variations suggest that a hitherto unrecognized process plays a role 73 

that causes oscillating changes in either slab pull, or friction, or both that perhaps becomes more 74 

pronounced with higher rates of subducting plate motion. 75 

Subducting plate motions and changes therein must be accommodated in the underlying 76 

mantle. Correlations between imaged mantle structure and the global geological record of 77 

subduction show that the remnants of detached slabs in the lower mantle sink with rates of ~1-1.5 78 

cm/a, almost regardless of the rate at which they subducted at a trench (Butterworth et al., 2014; 79 

Van Der Meer et al., 2010; Van der Meer et al., 2018). Therefore, subducting slabs eventually 80 

decelerate from plate tectonic rates (up to 20-25 cm/a (Hu et al., 2022; Zahirovic et al., 2015)  to 81 

average lower mantle sinking rates of <1.5 cm/a. To accommodate this requires some form of slab 82 

shortening or thickening. Subduction modelling revealed that this deceleration naturally leads to 83 
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slab thickening, which could occur in the mantle transition zone through slab buckling (Goes et al., 84 

2017; Ribe et al., 2007; Sigloch & Mihalynuk, 2013). Later, detailed tomographic analyses of slabs in 85 

the mantle transition zone and in the top of the lower mantle confirmed that they are systematically 86 

buckled (Chen et al., 2019; Wu et al., 2016). Tomography of the lower mantle below India has 87 

revealed a major slab that is widely interpreted to represent the subducted Neotethys ocean, and 88 

that also contains the lithosphere that subducted between 65 and 50 Ma (Parsons et al., 2021; 89 

Qayyum et al., 2022; Replumaz et al., 2004; Van der Voo et al., 1999). The enormous volume of this 90 

slab requires that it was drastically thickened, and while tomographic detail so far has not been able 91 

to resolve internal structure, the documentation that slabs buckle during thickening elsewhere 92 

(Chen et al., 2019; Wu et al., 2016) makes it feasible that this process also played a role here. Such 93 

buckling, which potentially may become more pronounced with faster subduction, makes slabs fold 94 

backward and forward, creating an oscillating slab dip and slab motion (Billen & Arredondo, 2018; 95 

Čížková & Bina, 2013; Garel et al., 2014; Holt et al., 2015; Lee & King, 2011; Schellart, 2005; Xue et 96 

al., 2022). Here, we hypothesize that pronounced slab buckling causes the rapid, large-amplitude 97 

Eocene plate motion fluctuations of India.  98 

To test this hypothesis, we conduct numerical experiments with decoupled, freely 99 

subducting plates that buckle in the mantle transition zone, creating periodically changing plate 100 

motions (Pokorný et al., 2021). We evaluate under which conditions fluctuations such as those 101 

reported for the India plate may occur. We will discuss our results in terms of the implications for 102 

our understanding of the driving forces of plate tectonics, and how obtaining detailed marine 103 

magnetic anomaly records may aid improving the predictive power of plate tectonic reconstructions 104 

for applications to plate boundary deformation and magmatic or mineralization processes.  105 

 106 

Figure 1 – Indian plate motion history 107 
Indian plate velocity relative to Eurasia from 60 Ma ago to 20 Ma ago. Shown are the reconstructed 108 
velocities of the Indian plate from DM21 (DeMets & Merkouriev, 2021), WL12 (White & Lister, 2012) 109 
and vH11 (van Hinsbergen et al., 2011). Blue and grey rectangles indicate error margins in 110 
reconstructions and time interval spanned by each stage velocity.  111 
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 112 
Figure 2 – Model setup 113 
Model domain is 10 000 km wide and 2000 km deep. Dashed lines indicate major phase transitions 114 
at 410 and 660 km depth. Red line positioned at the top of the subducting slab indicates a 10 km 115 
thick weak crustal layer, effectively separating the plates. Two black asterisks represent tracers used 116 
to track the velocity of the subducting plate and overriding plate. Free slip boundary condition is 117 
prescribed on all boundaries. 118 

2. Methods and model setup 119 

A set of partial differential equations in an extended Boussinesq approximation (Ita & King, 120 

1994) (EBA) is used to describe our numerical model of subduction. These equations are solved by a 121 

finite element method implemented in the SEPRAN package (Segal & Praagman, 2005; van den Berg 122 

et al., 2015). Our model domain is represented by a 2D box 10,000 km wide and 2,000 km deep 123 

(Figure 2). The subducting plate stretches from the ridge in the upper left corner to the trench in the 124 

middle of the upper surface. The initial temperature distribution in the subducting plate follows a 125 

half-space model followed by an adiabatic profile with a potential temperature of 1573 K beneath it. 126 

 We carried out two sets of simulations with similar matching parameters. The first set with 127 

an overriding plate that is allowed to move freely (subduction with possible rollback), while the 128 

second set features a fixed overriding plate (stationary trench – restricted rollback). Figure 3 129 

illustrates time evolution of a reference model for both sets of simulations. In these reference 130 

models we assume a subducting and overriding plate age of 100 Ma at the trench and the viscosity 131 

of the crustal decoupling layer of 1020𝑃𝑎 ⋅ 𝑠.  132 

Models of the first set have a mobile overriding plate with a ridge in the upper right corner. 133 

The rollback of trench induces the motion of the entire overriding plate towards the left, which is 134 

facilitated by the presence of a hot and low-viscosity mid-ocean ridge. The second set of models has 135 

a stagnant overriding plate with an age increasing from approximately ~17 Ma at the right-hand side 136 

to 100 Ma (i.e., for the reference model) at the trench. Cold and thus strong overriding plates cannot 137 

move to the left because of the impermeable free slip condition on the right vertical boundary. 138 

Therefore, rollback is prohibited and the trench remains stagnant during the model run. We 139 

evaluated the effects of the age of the subducting and overriding plates (Capitanio et al., 2010; Garel 140 

et al., 2014) – we tested ages at the trench ranging from 50 Ma to 200 Ma.  141 
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 To obtain an initial slab with sufficient negative buoyancy that would facilitate subduction, 142 

we first execute a short kinematic run to develop the slab tip to a depth of approximately 200 km. 143 

Within this kinematic prerun a constant convergence velocity of 2.5 cm/a is prescribed on the top of 144 

the subducting plate. After 6 Ma the kinematic boundary condition is turned off and an impermeable 145 

free slip is prescribed on all boundaries. 146 

Top and bottom model boundaries are considered isothermal with respective temperatures 147 

of 273 K and 2132 K while the vertical boundaries have zero heat flux. Thermal diffusivity is constant 148 

10 −6 𝑚2 𝑠−1 while thermal expansivity is depth dependent (Katsura et al., 2009) and decreases 149 

from 3 × 10 −5 𝐾−1 at the surface to 1.2 ×  10−5 𝐾−1  at the bottom of the model domain (Hansen 150 

et al., 1993). 151 

We consider the major mantle phase transitions: the polymorphous exothermic transition of 152 

forsterite to wadsleyite at 410 km depth and the endothermic transition of ringwoodite to 153 

bridgmanite and periclase at a depth of 660 km with their associated petrological density contrasts 154 

(Supplementary Table 1). These are incorporated through the harmonic parameterization (Čížková et 155 

al., 2007) of a phase function (Christensen & Yuen, 1985). We performed a parametric study where 156 

we varied the values of Clapeyron slopes in a usually accepted range (𝛾410 = 1 − 3 MPa/K, 157 

𝛾660 =  −2.5 − (−1.5) MPa/K). All these models result in quasiperiodic buckling of the slab. The 158 

strengths of the phase transitions control slab dip angle and related rollback velocity, the ability to 159 

penetrate the lower mantle as well as slab viscosity in the transition zone. These factors than affect 160 

observed periods of the oscillations that vary between ~ 10 – 20 Ma. Based on this parametric study 161 

we chose the values of Clapeyron slopes of 3 MPa/k and -1.5 MPa/K for the 410 km and 660 km 162 

phase transitions. These values were chosen to accommodate realistic average subduction velocities 163 

(Zahirovic et al., 2015) with fast plate velocity oscillations (DeMets & Merkouriev, 2021) while still 164 

agreeing with in-situ X-ray diffraction experiments and thermodynamic estimates (Bina & Helffrich, 165 

1994; Katsura et al., 2004; Morishima et al., 1994; Su et al., 2022). 166 

To evaluate the subducting plate velocity and trench retreat velocity in our models we use 167 

two passive particles, one initially positioned in the subcrustal lithosphere of the subducting plate 168 

(~4600 km left of the trench) and the other one in the overriding plate close to the trench (Figure 2). 169 

 170 

2.1 Rheological description 171 
Our subduction model incorporates crustal and mantle material. A low-viscosity crustal layer 172 

facilitating mechanical decoupling of the subducting and overriding plate is initially positioned along 173 

the top of the subducting plate and within the subduction channel (Figure 2). Crustal material is 174 

tracked using 2 million tracers prescribed in the crust and its closest vicinity. The initial thickness of 175 

the crustal layer is 10 km.  176 
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Upper mantle material is described by a composite rheology model (Čıž́ková et al., 2002; van 177 

den Berg et al., 1993) combining dislocation creep, diffusion creep and a power-law stress limiter 178 

which effectively approximates the Peierls creep (Androvičová et al., 2013). In the diffusion and 179 

dislocation creep equations (equations 1 and 2), the pressure and temperature dependence of 180 

viscosity follows Arrhenius law: 181 

 182 

𝜂
𝑑𝑖𝑓𝑓

= 𝐴𝑑𝑖𝑓𝑓
−1 𝑒𝑥𝑝 (

𝐸𝑑𝑖𝑓𝑓+𝑝𝑉𝑑𝑖𝑓𝑓

𝑅𝑇
)       (1) 183 

𝜂
𝑑𝑖𝑠𝑙

=  𝐴𝑑𝑖𝑠𝑙
−1/𝑛  𝜀||̇

(1−𝑛)/𝑛 𝑒𝑥𝑝 (
𝐸𝑑𝑖𝑠𝑙+𝑝𝑉𝑑𝑖𝑠𝑙

𝑛𝑅𝑇
)     (2) 184 

𝜂
𝑦

= 𝜎𝑦𝜀�̇�
 −(1/𝑛𝑦)𝜀|̇|

(1/𝑛𝑦)−1       (3) 185 

1

𝜂𝑒𝑓𝑓
=

1

𝜂𝑑𝑖𝑓𝑓𝑙
+

1

𝜂𝑑𝑖𝑠𝑙
+

1

𝜂𝑦
.                   (4) 186 

 187 

Here 𝐴𝑑𝑖𝑓𝑓/𝑑𝑖𝑠𝑙 , 𝐸𝑑𝑖𝑓𝑓/𝑑𝑖𝑠𝑙,, 𝑉𝑑𝑖𝑓𝑓/𝑑𝑖𝑠𝑙   are pre-exponential parameter, activation energy, activation 188 

volume for diffusion and dislocation creep, 𝜀||̇  is the second invariant of the strain rate tensor and 189 

n is the power-law exponent of the dislocation creep. A power law stress limiter viscosity is 190 

parametrized through the yield stress 𝜎𝑦 , reference strain rate  �̇�𝑦 and a power-law exponent 𝑛𝑦 , 191 

which is set to 10 in our models (equation 3). Assuming unique stress, individual creep mechanism 192 

viscosities are combined into the effective viscosity through equation 4.  193 

The lower mantle deformation is assumed to be mainly through diffusion creep (Karato et 194 

al., 1995), therefore we take 𝜂
𝑒𝑓𝑓

= 𝜂𝑑𝑖𝑓𝑓 in the lower mantle. Prefactor 𝐴𝑑𝑖𝑓𝑓 and activation 195 

parameters of lower mantle diffusion creep are based on slab sinking speed analysis (Čížková et al., 196 

2012).  197 

The crust in our models is mostly assumed to have constant viscosity in a range of 198 

𝜂
𝑐

= 5𝑥1019 −  5𝑥1020 𝑃𝑎 𝑠. We have also conducted several tests with the composite nonlinear 199 

rheology of the crust (Pokorný et al., 2021) combining dislocation creep (Ranalli, 1995) and a Byerlee 200 

type deformation (Karato, 2008) as an approximation of the brittle failure (pseudoplastic 201 

deformation). In these models, dislocation creep viscosity follows equation 5 (similar to equation 2), 202 

but the parameters 𝐴𝑐 , 𝐸𝑐 , 𝑉𝑐 and  𝑛𝑐 differ from mantle parameters of equation 2 – see table. 203 

 204 

𝜂𝑐
𝑑𝑖𝑠𝑙

=  𝐴𝑐
−1/𝑛𝑐  𝜀||̇

(1−𝑛𝑐)/𝑛𝑐  𝑒𝑥𝑝 (
𝐸𝑐+𝑝𝑉𝑐

𝑛𝑐𝑅𝑇
)     (5) 205 

 206 

Pseudoplastic deformation limits the maximum stress in the crust to  𝜎𝑐
𝑦, where this stress 207 

limit increases with lithostatic pressure p through equation 6, here 𝜏𝑐 is the cohesion and 𝜇 is the 208 
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friction coefficient. The pseudoplastic viscosity 𝜂
𝑝𝑙

 is then defined by equation 7 and the effective 209 

crustal viscosity is given by equation 8. 210 

 211 

𝜎𝑐
𝑦 = 𝜏𝑐 + 𝜇𝑝,         (6) 212 

𝜂
𝑝𝑙

=
𝜎𝑐

𝑦

2𝜀||̇
 .          (7) 213 

1

𝜂𝑐
𝑒𝑓𝑓

=
1

𝜂𝑐
𝑑𝑖𝑠𝑙

+
1

𝜂𝑐
𝑝𝑙

.        (8) 214 

3. Results 215 

 We conducted experiments in a 2D numerical model of subduction (see methods). The 216 

rheology of the upper and lower mantle (Čížková & Bina, 2013, 2019; Čížková et al., 2012) was 217 

chosen to accommodate typical subduction velocities (Zahirovic et al., 2015) that in the upper 218 

mantle exceed the inferred lower mantle average slab sinking rates (Van der Meer et al., 2018). This 219 

mantle rheology leads to slab shortening and buckling in the upper-to-lower mantle transition zone 220 

(MTZ). We experimented with varying lithospheric ages to assess the effect of varying oceanic 221 

lithosphere thickness, and with varying crustal viscosities to assess the effect of average plate 222 

motion on the amplitude and period of the plate motion. We conducted one group of experiments, 223 

with a free overriding plate which leads to slab rollback and results in low angle buckling with 224 

multiple buckles (partly) present in above the 660 km discontinuity, and lower net lower mantle slab 225 

sinking rates (Figure 3a-g). Another group of experiments implements a fixed overriding plate that 226 

suppresses the development of rollback, such that subduction occurs at a mantle-stationary trench 227 

(Figure 3h-n). This generates buckling into a near-vertical slab-pile (Běhounková & Čížková, 2008) 228 

that slowly sinks into the lower mantle leaving at any time only one buckle present above the 660 229 

km discontinuity. 230 

Slab shortening occurs through the combined resistance of the more viscous lower mantle 231 

and the endothermic phase change at the 660 km boundary, while the shallower part of the slab is 232 

continuously pulled by the exothermic phase change at 410 km (see methods). Buckling of the 233 

shortening slab is influenced by the non-linear rheology of the slab that results from the presence of 234 

a crust and lithospheric mantle layer (Pokorný et al., 2021). We assess the horizontal velocity of the 235 

subducting plate VSP and upper plate VUP as an effect of lithospheric thickness (corresponding to the 236 

age of lithosphere at the trench) or through weakening subduction interfaces (crustal viscosity) to 237 

evaluate causal relationships between subduction dynamics and oscillating plate motions. 238 
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 239 

Figure 3 – Time evolution of the reference models 240 
Zoomed-in viscosity snapshots (4800x2000 km) of the model for 80 Ma of model time. Grey lines 241 
indicate position of the major phase transition at 410 and 660 km depth with the values of 242 
Clapeyron slopes of 3 and -1.5 MPa/K, respectively. Black dots are reference points used to calculate 243 
plate velocities. A-G) Reference model with free moving overriding plate resulting in trench retreat 244 
and an inclined slab in the lower mantle. H-N) Reference model with a stationary trench creating a 245 
vertical lower mantle slab.  246 
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3.1 Slab buckling in the reference models 247 

Figure 3 shows two reference experiments for the model setups with and without roll-back. 248 

These have a crustal viscosity of 1020 𝑃𝑎 ⋅ 𝑠 and overriding and subducting plate ages at the trench 249 

of 100 Ma. In the model with a mobile overriding plate (Figure 3 a-g), the slab undergoes a rapid, 250 

vertical descent through the upper mantle and the tip reaches the 660 km discontinuity after 251 

approximately 5 Ma model time (Supplementary Movie – panel A). The slab in the transition zone 252 

experiences down-dip compression which leads to (nonlinear) rheological weakening, causing the 253 

slab to buckle forwards (Figure 4a) (i.e., towards the overriding plate) over the trapped tip that 254 

started to penetrate the 660 km discontinuity. Next, the slab buckles backward (i.e. towards the 255 

downgoing plate). This leads to an episode of roll-back and short-lived VSP increase until the slab is 256 

almost vertically orientated at t = 11 Ma (Figure 4b). This is followed by the initiation of a second 257 

forward buckle, folding the slab over its deeper part in the MTZ, between t = 11 Ma and 18 Ma 258 

(Supplementary movie – panel A), associated with rollback and a decrease of VSP and increase of VUP 259 

(Figure 4b & 5a). This forward buckle starts tightening at t= 18 Ma, inducing the next backward 260 

buckle which is followed by a rapid increase of VSP up to 12 cm/a, accompanied by a decrease of VUP 261 

to almost 0 cm/a (Figure 5a). At t=20 Ma the next forward buckle initiated (Figure 3c), resulting again 262 

in an episode of rollback with decreasing VSP and increasing VUP (Figure 4a & 5a). 263 

 264 
Figure 4 – Illustrated effect of slab buckling on upper mantle slab geometry 265 
A cartoon illustrating forward (A) and backward (B) slab buckling as result of the interplay of the slab 266 
with the phase transitions and the lower mantle. During forward buckling the slab in the MTZ 267 
advances while the trench retreats, accompanied by a decreasing VSP and increasing VUP. The 268 
backward buckle allows the slab to sink fast in the MTZ with a rapid increase of VSP, while the trench 269 
stays mantle stationary. The backward buckles form faster than forward buckles, in about 3 versus 8 270 
Ma for our reference model.271 
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From here on, this process repeats itself quasi-periodically with new buckles forming 272 

approximately every 10 Ma (Figure 3c-f). This continuous subduction and rollback creates a buckled 273 

and thickened slab which slowly enters the lower mantle at an overall low-angle orientation (Figure 274 

3d-g). After 70 Ma and 5000 km of subduction, the weak crust that facilitates the modelled 275 

subduction (see methods) is entirely consumed, the subducting plate is locked to the overriding 276 

plate and subduction stops. The modelled slab detaches and sinks into the lower mantle at a rate of 277 

~1 cm/a, on par with inferred and modelled lower mantle slab sinking rates (Čížková et al., 2012; Van 278 

der Meer et al., 2018). Throughout the experiment, and after 70 Ma of modelled convergence, the 279 

overriding plate and trench moved ~1000 km in absolute motion, i.e., relative to the mantle, 280 

towards the subducting plate. 281 

The model with a fixed overriding plate, which suppresses rollback (Figure 3 H-N), shows 282 

similar characteristics. The slab is compressed down-dip and rheologically weakened in the transition 283 

zone, also resulting in the formation of a second buckle at around t=10 Ma (Figure 3i and 284 

Supplementary Movie – Panel B). The tightening of the buckle at the base of the upper mantle 285 

coincides with an increase in plate velocity around t=15Ma (Figure 5b). Due to the absence of 286 

rollback, the buckled slab is oriented vertically, like previously conceptualised ‘slab walls’ (Sigloch & 287 

Mihalynuk, 2013). The oscillations in VSP are of lower amplitude, on the order of 2 cm/a, recurring in 288 

a ~12 Ma period (Figure 5b). Absolute motion rates and oscillations therein of the subducting plate 289 

are similar to the scenario with roll-back but because the upper plate is fixed and roll-back does not 290 

add to the net convergence rate, subduction continued for ~90 Ma in model time, after which, the 291 

modelled slab detached and descended through the lower mantle with similar rate as in the 292 

reference model with rollback. 293 

 294 

3.2 Plate motion oscillations caused by buckling 295 

The quasiperiodic buckling of the subducting plate in the MTZ causes oscillations in the 296 

subduction velocity for both types of models (Figure 5) and in the motion of the overriding plate in 297 

the models that allow for roll-back (Figure 5a). Periods of fast VSP coincide with tightening of a buckle 298 

and steepening of the slab and correspond with minima in the VUP (Figure 5). We represent the 299 

periodicity of these plate motions with an amplitude and period, which we calculate in a 40 Ma 300 

time-interval of steady-state oscillations after subduction initiation and initial descend of the slab to 301 

the mantle transition zone, and before the end of the experiment (Figure 5). In the reference model 302 

with rollback, the subducting plate moved between 20 and 60 Ma with an average VSP of 5.1 cm/a 303 

while oscillating between ~2 and 10 cm/a (Figure 5a). The average amplitude and period of the VSP 304 

oscillations are 6.8 cm/a and 9.8 Ma (Figure 5a). Motion of the rigid, undeformable overriding plate, 305 
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follows the oscillatory motion of the retreating trench. In the 20-60 Ma interval the overriding plate 306 

has an average VUP of 1.8 cm/a towards the subducting plate, with oscillations between ~0 and 3 307 

cm/a (Figure 5a). Maxima in trench motion and VUP coincide with minima in VSP, both occurring 308 

during formation of a new forward buckle and the associated shallowing of slab dip. During 309 

tightening of the buckle, the slab rolls back from inclined to vertical, associated with a sharp rise in 310 

VSP, this change in angle is associated with a temporally near-stationary trench, and a resulting 311 

decrease in VUP towards 0. The total convergence rate (VC) then also oscillates (Figure 6a), with an 312 

amplitude of 6 cm/a, about 1 cm/a smaller than the amplitude of VSP. The motion of the subducting 313 

plate accounts for 50-100% of the total convergence, while the overriding plate is only responsible 314 

for 50-0% (Figure 6b). The highest contribution of trench motion to the convergence occurs during 315 

periods of minimal VSP. 316 

 317 

 318 
Figure 5 – Plate motion oscillations 319 
Temporal evolution of the plate motions in both reference models. A) Subduction velocity and 320 
overriding plate motion of the reference model with rollback, VSP oscillates between 2 and 10 cm/a 321 
and VUP between 0 and 3 cm/a. The reference point subducts at t = 60 Ma and slab detachment 322 
occurs around t = 70 Ma. B) Similar as in A but for the reference model with a stationary trench, 323 
subduction of the reference point occurs at t = 70 Ma and slab detachment at t = 90 Ma. The dashed 324 
lines indicate the average velocity, which is calculated over the shown 40 Ma time-interval. 325 
 326 
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 327 
Figure 6 – Total convergence rate 328 
A) Total convergence rate (VC = VSP + VUP) of the reference model with rollback showing smaller 329 
amplitudes in the oscillations, red and green lines are the same as in Figure 5A. B) Relative 330 
percentages of the total convergence rate for both the subducting plate (green; 100-50%) and 331 
overriding plate (orange; 50-0%). Grey line is the same as in A, and uses the y-axis of A. 332 

 333 

 The reference model with a fixed overriding plate (Figure 3h-n), so with a mantle-stationary 334 

trench, also shows oscillations in VSP (Figure 5b) caused by the buckling of the overall vertical slab in 335 

the MTZ. In the 40 Ma long time-interval (here, between 30-70 Ma) quasiperiodic buckling occurs 336 

with an average VSP of 5.7 cm/a (Figure 5b), faster than the model with rollback. The oscillations in 337 

VSP occur with a period of 12.7 Ma and an amplitude of 1.6 cm/a. This amplitude is more than 4 338 

times lower than the amplitude of oscillations in the model with rollback. The freedom to roll back 339 

allows for much larger variation in slab dips, and results in higher amplitudes of plate motion 340 

oscillations, as well as a higher net convergence rate. 341 

 342 

3.3 How subduction velocity controls plate motion oscillations 343 

 When lithosphere subducts at a rate of 5-6 cm/a as in our reference models, it can reach the 344 

660-discontinuity 13-11 Ma after passing the trench. Higher subduction rates decrease that time 345 

interval and increase the amount of subducted slab in the MTZ, creating an accommodation space 346 

problem. We performed numerical experiments to evaluate the effect of subduction speed on the 347 

formation of buckles and on oscillations in VSP. We modified the subduction rate in our experiments 348 

in two ways. On the one hand, we performed experiments with constant crustal viscosity while 349 

varying the age of the overriding and subducting plates. Overriding plate age determines the length 350 

of the subduction interface, with larger interfaces giving more resistance against subduction, 351 

decreasing subduction velocity. Subducting plate age determines the negative buoyancy, with higher 352 

subduction velocities for older plates (Capitanio et al., 2011). On the other hand, we performed 353 
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experiments with constant lithosphere ages (100 Ma) while adopting a constant or a power-law 354 

crustal viscosity, with lower viscosity yielding higher VSP (e.g., Behr et al., 2022; see methods). 355 

 356 

Figure 7 – Amplitude and Period of the subducting plate motion 357 
Overview of all models showing the relation the amplitude and period (colour) of VSP oscillations 358 
have with the average VSP. The four types of models shown are with a varying crustal viscosity and 359 
rollback (triangles) or a stationary trench (upside-down triangles), and models with changing SP and 360 
UP ages with rollback (circles) or a stationary trench (squares). For values of the crustal viscosity and 361 
ages of plates see figure 8. 362 
 363 

In our numerical experiments with varying plate age, the amplitude and period of the oscillations in 364 

plate velocity depend on the average subduction velocity (Figure 7, 8a-f). Models with a younger 365 

overriding plate and therefore a shorter subduction interface, have higher average subduction 366 

velocities within the 40 Ma long time-period with steady-state, quasi-periodic buckling (Figure 8 a,b). 367 

These velocities correlate directly to larger amplitudes (2-9 cm/a) in oscillations in the cases with 368 

rollback (Figure 8e). The cases with a stationary trench show that the amplitude of VSP oscillations is 369 

predominantly determined by subducting plate age while the effect of the overriding plate age is 370 

limited. VSP amplitudes vary between 1-3 cm/a (Figure 8f). Hence, faster-subducting plates have 371 

higher velocity amplitudes and lower periods of oscillation, and analogous to our reference models, 372 

this trend is most profound in models that allow rollback, in which the amplitudes are 2-3 times 373 

larger than in models with a mantle-stationary trench (Figure 7).  374 
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 The models with a varying constant crustal viscosity show the same trend: higher average 375 

VSP’s leads to larger velocity oscillation amplitudes (Figure 8 c,d) and smaller periods (Figure 8 g,h). 376 

Models with a power law crustal viscosity have smaller variations in average VSP between them than 377 

those with a constant viscosity and consequently also smaller variations in oscillation amplitudes, 378 

albeit with higher absolute amplitudes (Figure 8 c,d). This is the result of feedback mechanisms 379 

between subducting plate velocity and the power law crustal viscosity (Pokorný et al., 2021), which 380 

also keeps the period of VSP oscillations constant (Figure 8 g,h). 381 

 382 
Figure 8 – Amplitude, Period and VSP as function of plate age and crustal viscosity 383 
VSP as function of SP and OP ages for models with a moving trench (A) and a stationary trench (B). 384 
Amplitude of the oscillating VSP as function of the average VSP for crustal viscosities: 5e19, 1e20, 5e20 385 
(closed triangles) and three power law crustal viscosities (open triangles) in models with a moving 386 
trench (C) and a stationary trench (D). Amplitude of the oscillating VSP as function of SP and OP plate 387 
ages for models with a moving trench € and a stationary trench (F). Period of the oscillating VSP as 388 
function of the average VSP for a varying crustal viscosity in models with a moving trench (G) and a 389 
stationary trench (H). 390 
 391 

4. Discussion 392 

Slabs that subduct with plate motions exceeding the average lower mantle sinking rate of 1-393 

1.5 cm/a (Van der Meer et al., 2018) inevitably require that slabs shorten and thicken. 394 

Interpretations of geophysical observations and subduction models (cited above), including our own, 395 

show that this occurs through buckling of the slab in the MTZ (Figure 3). During slab buckling, the 396 

slab dip in the top ~300 km alternates between steep (vertical or overturned) and inclined, and our 397 
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results illustrate that this induces alternating phases of slab rollback and stagnation (or advance), as 398 

well as motion of the trench and upper plate (Figure 5a). Our results reveal that these alternating 399 

phases of forward and backward buckling induce variations in subduction rate and subducting plate 400 

motion. 401 

High subduction rates occur in our experiments when the slab buckles backward, towards 402 

the downgoing plate and adjacent to a previous slab fold. For backward buckling, the 403 

accommodation space in the MTZ in which the buckling slab can sink is available as opposed to 404 

forward buckling, in which case the lower part of the MTZ is still occupied by previously buckled slab 405 

(Figure 4a). As the 410 km phase transition enhances the negative buoyancy of slabs and thus 406 

enhances slab pull (Čížková & Bina, 2013) the accommodation in the MTZ for backward buckling 407 

allows the slab to force a short (in our reference model < 3 Ma) pulse of high VSP, and roll-back. 408 

During roll-back, the slab steepens to a vertical orientation accompanied by limited motion of the 409 

trench (Figure 4b), or even trench advance if the upper plate rheology would allow it. Once the slab 410 

overturns the next forward buckle initiates, during which time MTZ accommodation space 411 

decreases. A forward buckle is associated with trench retreat and slab advance in the MTZ, 412 

seemingly rotating over a pivot point in the upper mantle (Figure 4a). As a result, VSP decreases 413 

during a forward buckling slab while VUP increases. As the slab flattens during this forward buckle it 414 

creates accommodation space for the next backward buckle and associated acceleration (Figure 4b). 415 

 VSP variations in models with a forced stationary trench are smaller because the slab has less 416 

variation in the amount of accommodation space in the MTZ. Trench-stationary subduction causes 417 

the slab buckling in a vertical column (Figure 3i-n). Basically, the rate and amplitude of plate motion 418 

oscillation primarily depends on the average VSP: the higher, the bigger the space accommodation 419 

problem for slab folds in the MTZ. Our experiments with a moving trench and an average VSP of 6 420 

cm/a, i.e., the global average plate velocity (Van Der Meer et al., 2014), reveal rapid oscillations (< 10 421 

Ma periods) with large VSP fluctuations (3-13 cm/a) (Figure 6). 422 

The rapid subducting plate motion oscillations that we find in our experiments have similar 423 

periods to those recently observed in the high-resolution (0.5-1 Ma) reconstruction of marine 424 

magnetic anomalies of the Indian Ocean (DeMets & Merkouriev, 2021). Previous plate 425 

reconstructions using stage rotations based on larger stage intervals of 5-10 Ma (Figure 2) (Müller et 426 

al., 2019; van Hinsbergen et al., 2011) smoothed out such rapid plate motion changes (Espinoza & 427 

Iaffaldano, 2023; White & Lister, 2012). We illustrate this by sampling VSP in our reference 428 

experiment with a mobile upper plate: when we sample on a 1-2 Ma resolution, similar to DeMets & 429 

Merkouriev (2021) we resolve rapid (< 5 Ma) oscillations in plate motion caused by slab buckling 430 

(Figure 9a). However, sampling our VSP curves at larger, typically used intervals of 5 or 10 Ma 431 
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generates the smooth plate motion history that is widely inferred from plate reconstructions (Figure 432 

9 b,c). 433 

 434 
Figure 9 – Sampling intervals for subducting plate velocity 435 
Horizontal subducting plate motion for the reference model with rollback and stage velocities if 436 
sampled at 2, 5 or 10 Ma intervals. 437 
 438 
 The average VSP as well as the amplitudes of the plate motion oscillations for the case of 439 

India are higher than in our experiments. These differences are likely at least in part explained by the 440 

simplicity of our model: the absolute plate motion rate of India may have been much higher than we 441 

obtained in our experiments because the Indian plate may have been lubricated at the base by a 442 

mantle plume (Kumar et al., 2007; van Hinsbergen et al., 2011), or the subduction interface may 443 

have been heavily lubricated by sediments (Behr & Becker, 2018). The buckling behaviour may have 444 

differed because Indian subduction rates were not uniform along-strike, but increased eastward (van 445 

Hinsbergen et al., 2011) and the lithosphere in the MTZ during the 55-50 Ma ago interval during 446 

which the oscillations were reconstructed may have been of continental origin (van Hinsbergen et 447 

al., 2019). This could have influenced the effects of the MTZ on slab pull, the rate of slab transfer 448 

into the lower mantle, and the amount of accommodation space in the MTZ, which would all 449 

influence the oscillation VSP amplitude and period in our experiments.  450 

An additional difference with our simple experiments is that subduction of the Indian plate 451 

occurred at a trench that was not retreating, as in our experiments, but instead slowly moving 452 
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northwards, i.e. advancing (van Hinsbergen et al., 2019). In our experiments, subduction at a mantle-453 

stationary trench occurs with lower amplitude oscillations than those reconstructed by DeMets & 454 

Merkouriev (2021). However, the Indian slab may have advanced below the upper plate and 455 

retreated without significantly affecting trench motion as in our experiments. Slab buckling 456 

combined with trench advance could create an opposite regime as in our experiments, with 457 

acceleration during forward buckles and vice versa. Trench motion can even alternate between 458 

retreat and advance (Stegman et al., 2010). This could explain the ~1000 km wide north to south 459 

tomographic anomaly widely interpreted as the Indian slab (Qayyum et al., 2022). We foresee that 460 

these processes may produce variations in MTZ accommodation space even when the trench is 461 

nearly stationary. Modelling such additional complexities is beyond the scope of our investigation: 462 

with the even higher subduction rates for India than we reproduced in our experiments, the space 463 

problem in the MTZ must have been even larger than in our experiments, and we therefore consider 464 

buckling a plausible candidate to explain the reconstructed oscillations. 465 

 In our slab-pull-driven subduction models with a freely moving upper plate we also observe 466 

oscillating motion of the trench and upper plate. In our simple experiments, the rigid upper plate is 467 

not able to deform, and it thus moves along with the trench where naturally this would lead to 468 

changes in stress state, reflected by episodic extensional or contractional upper plate deformation 469 

(Billen & Arredondo, 2018; Boutoux et al., 2021; Capitanio et al., 2010; Cerpa et al., 2018; Dasgupta 470 

et al., 2021; Lee & King, 2011; Pons et al., 2022; Van Hinsbergen & Schouten, 2021). Such variations 471 

may be of interest to the understanding of fluid and magmatic processes affecting the upper plate. 472 

For instance, episodic magmatic ponding alternating with migration and flare ups (Chapman et al., 473 

2021), and episodic mineralization (Chelle-Michou et al., 2015) and associated pulses in the 474 

formation of ore deposits (Wilson et al., 2020) may be the result of such stress state oscillations. 475 

Therefore, for subduction zones where slab buckling leads to oscillating trench motion and upper 476 

plate deformation, enhanced resolution in marine magnetic anomalies and accompanying 477 

reconstructions could lead to a better predictive power in the timing of these magmatic and ore-478 

genesis related upper plate processes. In the Andes, alternations on a timescale of ~10 Ma between 479 

shortening and trench retreat were recently postulated to result from slab buckling (Pons et al., 480 

2022). For Tibet, the only high-resolution deformation records in the relevant time interval of 60-50 481 

Ma are from the Qiangtang terrane of northern Tibet, far from the trench (Li, van Hinsbergen, 482 

Najman, et al., 2020; Li, van Hinsbergen, Shen, et al., 2020), which on a first order appear to record 483 

shortening pulses that coincide with the oscillations (DeMets & Merkouriev, 2021). More high-484 

resolution work, for instance in the Xigaze forearc basin, could reveal whether the upper plate may 485 

also have recorded short periods of extension.  486 
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 Would all subducting plates then show these oscillating plate motions? Higher-resolution 487 

tectonic reconstructions could provide the answer, but we see several reasons why not all ridges 488 

that border subducting plates may record such oscillations similarly. The process of buckling at long 489 

subduction zones might not occur synchronously along the entire trench. Such a process may explain 490 

the oscillating azimuth of India-Asia convergence during the oscillations documented DeMets & 491 

Merkouriev (2021). In addition, subduction rate may vary gradually along-strike of a trench (e.g., the 492 

west Pacific subduction zones from New Zealand to Kamchatka), and rapidly across triple junctions 493 

(e.g., Vaes et al., 2019; van de Lagemaat et al., 2018). Plates like the modern Pacific plate would be 494 

less susceptible to the effect of slab buckling in the MTZ, even if the oscillations in a 2D system likely 495 

occur. We foresee that oscillations in plate motion are best visible for plates where subduction zones 496 

are oriented sub-parallel to spreading ridges and sub-perpendicular to the plate motion direction. 497 

Possible candidates for the Cenozoic besides the Indian plate are the Nazca plate (Pons et al., 2022), 498 

the Juan de Fuca plate, the Cocos plate, or the Aluk plate (van de Lagemaat et al., 2023) and for 499 

earlier times perhaps the Farallon or Kula plates. We consider these targets for high-resolution 500 

magnetic anomaly reconstruction to further test the possibilities of slab buckling and the 501 

opportunities it may apply to understand mantle and lithosphere dynamics and magmatic and 502 

economic geology. 503 

Finally, our models show that the rapid oscillations shown by DeMets & Merkouriev (2021) may well 504 

be explained by buckling of the subducting slab that results from the space problem caused by the 505 

much lower sinking rates of slabs in the lower mantle. This implies that plate motions that exceed 506 

lower mantle slab sinking rates, so larger than 1-1.5 cm/a (Butterworth et al., 2014; Van Der Meer et 507 

al., 2010; Van der Meer et al., 2018), are resisted from the transition zone downwards. In other 508 

words, typical plate motions must be primarily driven in the top few hundred kilometers of the 509 

mantle. The 410 km phase transition still enhances slab pull, but at the 660 discontinuity the slab 510 

encounters resistance and thickens. In addition, the top 100 km of the Earth also resists plate motion 511 

due to friction on the subduction interface or drag resistance from the underlying mantle, therefore 512 

plate tectonics must primarily be driven between depths of ~100 and 500 km, or only 6-7% of the 513 

Earths radius. This is a remarkably small niche that on Earth apparently has the right conditions for 514 

plate tectonics. We foresee that understanding the dynamics of this narrow zone throughout Earth’s 515 

history holds the key to understand the uniqueness of our planet to start and sustain plate tectonics. 516 

Conclusions 517 

Buckling of a slab in the mantle transition zone may explain the rapid oscillations in subducting plate 518 

motion recently shown in high-resolution reconstructions. The amplitude and period of these 519 
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oscillations depend on the average subduction speed and accommodation space in the mantle 520 

transition zone. Furthermore, it may also cause episodic migration of a trench and rapid deformation 521 

pulses of the upper plate. This mechanism reveals that slab pull might only be an effective plate 522 

motion driver in the top few hundred kilometers of the upper mantle. 523 

 524 
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